Landscape Ecology

, Volume 30, Issue 3, pp 501–516 | Cite as

How to integrate remotely sensed data and biodiversity for ecosystem assessments at landscape scale

  • Petteri VihervaaraEmail author
  • Laura Mononen
  • Ari-Pekka Auvinen
  • Raimo Virkkala
  • Yihe Lü
  • Inka Pippuri
  • Petteri Packalen
  • Ruben Valbuena
  • Jari Valkama
Research Article



Biodiversity and ecosystem functioning underpins the delivery of all ecosystem services and should be accounted for in all decision-making related to the use of natural resources and areas. However, biodiversity and ecosystem services are often inadequately accounted for in land use management decisions.


We studied a boreal forest ecosystem by linking citizen-science bird data with detailed information on forest characteristics from airborne laser scanning (ALS). In this paper, we describe this method, and evaluate how similar kinds of biological data sets combined with remote sensing can be used for ecosystem assessments at landscape scale.


We analysed data for 41 boreal forest bird species and for 14 structural ALS-based forest parameters.


The results support the use of the selected method as a basis for quantifying spatially-explicit biodiversity indicators for ecosystem assessments, while suggestions for improvements are also reported. Finally, we evaluate the capacity of those indicators to describe biodiversity-ecosystem service relationships, for example with carbon trade-offs. The results showed clear distinctions between the different species as measured, for example, by above-ground forest biomass at the observation sites. We also assess how the available data sources can be developed to be compatible with the concept of essential biodiversity variables (EBV), which has been put forward as a solution to cover the most important aspects of biodiversity and ecosystem functioning.


We suggest that EBVs should be integrated into environmental monitoring programmes in the future, and citizen science and remote sensing methods need to be an important part of them.


Ecosystem service Habitat LiDAR Essential biodiversity variable Citizen science Forest 



We acknowledge the following projects, funders, and individuals, who supported this paper: the CLIMES project (Academy of Finland), the Maj and Tor Nessling foundation, the Finnish Cultural Foundation’s North Karelia Regional Fund, local BirdLife partners Tavastia Proper Ornithological Society/J. Kairamo and Pirkanmaa Ornithological Society/J. Helin, O. Lehtonen T. Tahvanainen, and the two anonymous reviewers of the manuscript.

Supplementary material

10980_2014_137_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)
10980_2014_137_MOESM2_ESM.docx (242 kb)
Supplementary material 2 (DOCX 242 kb)


  1. Arzel C, Rönkä M, Tolvanen H, Aarras N, Kamppinen M, Vihervaara P (2015) Species diversity, abundance and brood numbers of breeding waterbirds in relation to habitat properties in an agricultural watershed. Ann Zool Fennici 52:00–00Google Scholar
  2. Asner GP, Mascaro J, Muller-Landau HC, Vieilledent G, Vaudry R, Rasamoelina M, Hall JS, van Breugel M (2012) A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168(4):1147–1160CrossRefPubMedGoogle Scholar
  3. Auvinen AP, Kemppainen E, von Weissenberg M (ed.) (2010) Fourth national report on the implementation of the convention of biological diversity in Finland. The finnish environment 2|2010. Ministry of the Environment, Helsinki. p 192Google Scholar
  4. Axelsson P (2000) DEM generation from laser scanning data using adaptive TIN models. Int Arch Photogramm Remote Sens 33:110–117Google Scholar
  5. Barbet-Massin M, Thuiller W, Jiguet F (2012) The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob Chang Biol 18:881–890CrossRefGoogle Scholar
  6. Bradbury RB, Hill RA, Mason DC, Hinsley SA, Wilson JD, Balzter H, Anderson GQA, Whittingham MJ, Davenport IJ, Bellamy PE (2005) Modelling relationships between birds and vegetation structure using airborne LiDAR data: a review with case studies from agricultural and woodland environments. Ibis 147:443–452CrossRefGoogle Scholar
  7. Brommer JE, Lehikoinen A, Valkama J (2012) The breeding ranges of central European and Arctic bird species move poleward. PLoS One 7(9):e43648CrossRefPubMedCentralPubMedGoogle Scholar
  8. Carignan V, Villard MA (2002) Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess 78(1):45–61CrossRefPubMedGoogle Scholar
  9. City of Helsinki (2014) Helsinki Environmental Statistics. Accessed Apr 2014
  10. Clawges R, Vierling K, Vierling L, Rowell E (2008) The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest. Remote Sens Environ 112:2064–2073CrossRefGoogle Scholar
  11. Coops NC, Duffe J, Koot C (2010) Assessing the utility of lidar remote sensing technology to identify mule deer winter habitat. Can J Remote Sens 36:81–88CrossRefGoogle Scholar
  12. Coops NC, Schaepman ME, Mücher CA (2013) What multiscale environmental drivers can best be discriminated from a habitat index derived from a remotely sensed vegetation time series? Landscape Ecol 28:1529–1543CrossRefGoogle Scholar
  13. Damgaard C, Weiner J (2000) Describing inequality in plant size or fecundity. Ecology 81(4):1139–1142CrossRefGoogle Scholar
  14. Dauber J, Hirsch M, Simmering D, Waldhardt R, Otte A, Wolters V (2003) Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agric Ecosyst Environ 98:321–329CrossRefGoogle Scholar
  15. DeLuca WV, Studds CE, Rockwood LL, Marra P (2004) Influence of land use on the integrity of marsh bird communities of Chesapeake Bay USA. Wetlands 24(4):837–847CrossRefGoogle Scholar
  16. European Environment Agency (2010) Assessing biodiversity in Europe—the 2010 report. EEA Report No 5/2010. European Environment Agency, CopenhagenGoogle Scholar
  17. Flaherty S (2012) Red squirrel habitat mapping using remote sensing. PhD thesis, University of Edinburgh. Available at
  18. Fowler RJ, Little JJ (1979) Automatic extraction of irregular network digital terrain models. Comput Graph 13:199–207CrossRefGoogle Scholar
  19. Glasser GJ (1962) Variance formulas for the mean difference and coefficient of concentration. J Am Stat Assoc 57(299):648–654CrossRefGoogle Scholar
  20. Gottschalk TK, Huettmann F, Ehlers M (2005) Thirty years of analysing and modelling avian habitat relationships using satellite imagery data: a review. Int J Remote Sens 26(12):2631–2656CrossRefGoogle Scholar
  21. Gove HJ (2004) Structural stocking guides: a new look at old friend. Can J For Res 34:1044–1056CrossRefGoogle Scholar
  22. Graf RF, Mathys L, Bollmann K (2009) Habitat assessment for forest dwelling species using LiDAR remote sensing: capercaillie in the Alps. Forest Ecol Manag 257:160–167CrossRefGoogle Scholar
  23. Green AJ, Elmberg J (2014) Ecosystem services provided by waterbirds. Biol Rev 89:105–122CrossRefPubMedGoogle Scholar
  24. Heikkinen RK (1991) Multivariate analysis of esker vegetation in southern Häme, S Finland. Ann Bot Fenn 28:201–224Google Scholar
  25. Heino J (2010) Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecol Indic 10:112–117CrossRefGoogle Scholar
  26. Hill RA, Hinsley SA, Gaveau DLA, Bellamy PE (2004) Cover: predicting habitat quality for Great Tits (Parus major) with airborne laser scanning data. Int J Remote Sens 25(22):4851–4855CrossRefGoogle Scholar
  27. Hill RA, Thomson AG (2005) Mapping woodland species composition and structure using airborne spectral and LiDAR data. Int J Remote Sens 26(17):3763–3779CrossRefGoogle Scholar
  28. Hinsley SA, Hill RA, Bellamy PE, Harrison NM, Speakman JR, Wilson AK, Ferns PA (2008) Effects of structural and functional habitat gaps on breeding woodland birds: working harder for less. Landscape Ecol 23:615–626CrossRefGoogle Scholar
  29. Holmberg M, Akujärvi A, Anttila S, Arvola L, Bergström I, Böttcher K, Feng X, Forsius M, Huttunen I, Huttunen M, Laine Y, Lehtonen H, Liski J, Lu N, Lü Y, Mononen L, Rankinen K, Repo A, Seppänen V, Vanhala P, Vihervaara P (2015) Virtual research environment for ecosystem services—ESLab pilot application to a boreal watershed in southern Finland. Landscape Ecol. doi: 10.1007/s10980-014-0122-z
  30. Järvinen T (2010) Metsän laadun vaikutus boreaalisten lintulajien levinneisyyteen paikallisella ja maisematasolla. University of Oulu, Pro gradu, Oulu (In Finnish)Google Scholar
  31. Jeanneret P, Schüpbach B, Luka H (2003) Quantifying the impact of landscape and habitat features on biodiversity in cultivated landscapes. Agric Ecosyst Environ 98:311–320CrossRefGoogle Scholar
  32. Jones TG, Arcese P, Sharma T, Coops N (2013) Describing avifaunal richness with functional and structural bioindicators derived from advanced airborne remotely sensed data. Int J Remote Sens 34:2689–2713CrossRefGoogle Scholar
  33. Jung K, Kaiser S, Boehm S, Nieschhulze J, Kalko EKV (2012) Moving in three dimensions: effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. J Appl Ecol 49:523–531CrossRefGoogle Scholar
  34. Koskimies P (1989) Birds as a tool in environmental monitoring. Ann Zool Fenn 26:153–166Google Scholar
  35. Laasasenaho J (1982) Taper curve and volume functions for pine, spruce and birch. Comm Inst For Fenn 108:1–74Google Scholar
  36. Lone K, Loe LE, Gobakken T, Linnel JDC, Odden J, Remmen J, Mysterud A (2014) Living and dying in a multi-predator landscape of fear: roe deer are squeezed by contrasting pattern of predation risk imposed by lynx and humans. Oikos. doi: 10.1111/j.1600-0706.2013.00938.x Google Scholar
  37. Luoto M, Virkkala R, Heikkinen RK, Rainio K (2004) Predictive modeling of bird species richness using remote sensing and topography data in boreal agricultural-forest mosaic. Ecol Appl 14:1946–1962CrossRefGoogle Scholar
  38. Mace GM, Norris K, Fitter AH (2012) Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol 27(1):19–26CrossRefPubMedGoogle Scholar
  39. Maes J, Braat L, Jax K, Hutchins M, Furman E, Termansen M, Bidoglio G (2011) A spatial assessment of ecosystem services in Europe: methods, case studies and policy analysis—Phase 1 (PEER Report 3). Retrieved from
  40. Maes J, Egoh B, Willemen L, Liquete C, Vihervaara P, Schägner JP, Grizzetti B, Drakou EG, Notte AL, Zulian G, Bouraoui F, Paracchini M, Braat L, Bidoglio G (2012a) Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst Serv 1:31–39CrossRefGoogle Scholar
  41. Maes J, Paracchini ML, Zulian G, Dunbar MB, Alkemade R (2012b) Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol Conserv 155:1–12CrossRefGoogle Scholar
  42. Magurran A (2004) Measuring biological diversity. Blackwell Publishing, OxfordGoogle Scholar
  43. McDermid GJ, Hall RJ, Sanchez-Azofeifa GA, Franklin SE, Stenhouse GB, Kobliuk T, LeDrew EF (2009) Remote sensing and forest inventory for wildlife habitat assessment. Forest Ecol Manag 257:2262–2269CrossRefGoogle Scholar
  44. Melin M, Packalén P, Matala J, Mehtätalo L, Pusenius J (2013) Assessing and modeling moose (Alces alces) habitats with airborne laser scanning data. Int J Appl Earth Obs 23:389–396CrossRefGoogle Scholar
  45. Morelli F, Jerzak L, Tryjanowski P (2014) Birds as useful indicators of high nature value (HNV) farmland in Central Italy. Ecol Indic 38:236–242CrossRefGoogle Scholar
  46. Müller J, Brandl R (2009) Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. J Appl Ecol 46:897–905CrossRefGoogle Scholar
  47. Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99CrossRefGoogle Scholar
  48. Næsset E, Gobakken T, Holmgren J, Hyyppä H, Hyyppä J, Maltamo M (2004) Laser scanning of forest resources: the Nordic experience. Scand J Forest Res 19:482–499CrossRefGoogle Scholar
  49. Näslund M (1937) Skogsförsöksanstaltens gallringsförsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt 29:1–169 (In Swedish)Google Scholar
  50. Newton AC, Hill RA, Echeverría C, Golicher D, Benayas JMR, Cayuela L, Hinsley SA (2009) Remote sensing and the future of landscape ecology. Prog Phys Geogr 33(4):528–546CrossRefGoogle Scholar
  51. Normander B, Levin G, Auvinen AP, Bratli H, Stabbetorp O, Hedblom M, Glimskär A, Gudmundsson GA (2012) Indicator framework for measuring quantity and quality of biodiversity—exemplified in the Nordic countries. Ecol Indic 13:104–116CrossRefGoogle Scholar
  52. O’Connell TJ, Jackson LE, Brooks RP (2000) Bird guilds as indicators of ecological condition in the central Appalachians. Ecol Appl 10:1706–1721CrossRefGoogle Scholar
  53. O’Connell TJ, Bishop JA, Brooks RP (2007) Sub-sampling data from the North American Breeding Bird Survey for application to the Bird Community Index, an indicator of ecological condition. Ecol Indic 7(3):679–691CrossRefGoogle Scholar
  54. Packalen P, Suvanto A, Maltamo M (2009) A two stage method to estimate species specific growing stock. Photogramm Eng Remote Sens 75:1451–1460CrossRefGoogle Scholar
  55. Pakkala T, Lindén A, Tiainen J, Tomppo E, Kouki J (2014) Indicators of forest biodiversity: which bird species predict high breeding bird assemblage diversity in boreal forests at multiple spatial scales? Ann Zool Fenn 51:457CrossRefGoogle Scholar
  56. Palminteri S, Powell GVN, Asner GP, Peres CA (2012) LiDAR measurements of canopy structure predict spatial distribution of a tropical mature forest primate. Remote Sens Environ 127:98–105CrossRefGoogle Scholar
  57. Pereira HM, Belnap J, Brummit N, Collen B, Ding H, Gonzales-Espinosa M, Gregory RD, Honrado J, Jongman RHG, Julliard R, McRae J, Proenca V, Rodrigues P, Opige M, Rodriguez JP, Schmeller DS, van Swaay C, Vieira C (2010) Global biodiversity monitoring. Front Ecol Environ 9:458–460Google Scholar
  58. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummitt N, Butchart SHM, Cardoso AC, Coops NC, Dulloo E, Faith DP, Freyhof J, Gregory RD, Heip C, Höft R, Hurtt G, Jetz W, Karp DS, McGeoch MA, Obura D, Onoda Y, Pettorelli N, Reyers B, Sayre R, Scharlemann JPW, Stuart SN, Turak E, Walpole M, Wegmann M (2013) Essential biodiversity variables. Science 339:277–278Google Scholar
  59. Pesonen A, Maltamo M, Eerikäinen K, Packalén P (2008) Airborne laser scanning-based prediction of coarse woody debris volumes in a conservation area. Forest Ecol Manag 255:3288–3296CrossRefGoogle Scholar
  60. Pippuri I, Kallio E, Maltamo M, Peltola H, Packalén P (2012) Exploring horizontal area-based metrics to discriminate the spatial pattern of trees and need for first thinning using airborne laser scanning. Forestry 85:305–314CrossRefGoogle Scholar
  61. Pippuri I, Maltamo M, Packalen P, Mäkitalo J (2013) Predicting species-specific basal areas in urban forests using airborne laser scanning and existing stand register data. Eur J Forest Res 132:999–1012CrossRefGoogle Scholar
  62. Ranta P, Siitonen M (1996) Plant life in Vantaa. Gummerus, JyväskyläGoogle Scholar
  63. Repola J, Ojansuu R, Kukkola M (2007) Biomass functions for Scots pine, Norway spruce and birch in Finland. Metlan työraportteja/Working Papers of the Finnish Forest Research Institute 53Google Scholar
  64. Roberge JM, Angelstam P, Villard MA (2008) Specialised woodpeckers and naturalness in hemiboreal forests—deriving quantitative targets for conservation planning. Biol Conserv 141:997–1012CrossRefGoogle Scholar
  65. Sadoti G, Zuckerberg B, Jarzyna MA, Porter WF (2013) Applying occupancy estimation and modelling to the analysis of atlas data. Divers Distrib 19(7):804–814CrossRefGoogle Scholar
  66. Secretariat of the Convention on Biological Diversity (2010) Global biodiversity outlook 3. Montréal, 94 p. Available at
  67. Similä M, Kouki J, Mönkkönen M, Sippola AL, Huhta E (2006) Co-variation and indicators of species diversity: can richness of forest-dwelling species be predicted in northern boreal forests? Ecol Indic 6:686–700CrossRefGoogle Scholar
  68. Sullivan BL, Aycrigg JL, Barry JH, Bonney RE, Bruns N, Cooper CB, Damoulas T, Dhondt AA, Dietterich T, Farnsworth A, Fink D, Fitzpatrick JW, Fredericks T, Gerbracht J, Gomes C, Hochachka WM, Iliff MJ, Lagoze C, La Sorte FA, Merrifield M, Morris W, Phillips TB, Reynolds M, Rodewald AD, Rosenberg KV, Trautmann NM, Wiggins A, Winkler DW, Wong W-K, Wood CL (2014) The eBird enterprise: an integrated approach to development and application of citizen science. Biol Conserv 169:31–40Google Scholar
  69. Tattoni C, Rizzolli F, Pedrini P (2012) Can LiDAR data improve bird habitat suitability models? Ecol Model 245:103–110CrossRefGoogle Scholar
  70. Thomas CD, Anderson BJ, Moilanen A, Eigenbrod F, Heinemeyer A, Quaife T, Roy DB, Gillings S, Armsworth PR, Gaston KJ (2013) Reconciling biodiversity and carbon conservation. Ecol Lett 16:39–47CrossRefPubMedGoogle Scholar
  71. Tulloch AIT, Possingham HP, Joseph LN, Szabo J, Martin TG (2013) Realising the full potential of citizen science monitoring programs. Biol Conserv 165:128–138CrossRefGoogle Scholar
  72. Tynjälä M (ed) (2004) Oulun pesimälinnusto. Oulun kaupunkilintuatlaksen 1997–1999 tulokset [Breeding birds of Oulu. The results of the city bird atlas 1997–1999]. Oulun kaupungin ympäristöviraston julkaisu 2/2004. Oulun kaupunki, Pohjois-Pohjanmaan lintutieteellinen yhdistys & Pohjois-Pohjanmaan ympäristökeskusGoogle Scholar
  73. Väisänen RA, Lammi E, Koskimies P (1998) Distribution, numbers and population changes of Finnish breeding birds (In Finnish with an English summary). Otava, HelsinkiGoogle Scholar
  74. Valbuena R, Packalen P, Mehtätalo L, Garcia-Abril A, Maltamo M (2013a) Characterizing forest structural types and shelterwood dynamics from Lorenz-based indicators predicted by ALS. Can J Forest Res 43:1063–1074CrossRefGoogle Scholar
  75. Valbuena R, Maltamo M, Martin-Fernandez S, Packalen P, Pascual C, Nabuurs GJ (2013b) Patterns of covariance between Airborne Laser Scanning metrics and Lorenz curve descriptors of tree size inequality. Can J Remote Sens 39(1):18–31CrossRefGoogle Scholar
  76. Valbuena R, Vauhkonen J, Packalen P, Pitkänen J, Maltamo M (2014) Comparison of airborne laser scanning methods for estimating forest structure indicators based on Lorenz curves. ISPRS J Photogramm Remote Sens 95:23–33CrossRefGoogle Scholar
  77. Valkama J, Vepsäläinen V, Lehikoinen A (2011) The third finnish breeding bird atlas. Finnish Museum of Natural History and Ministry of Environment, HelsinkiGoogle Scholar
  78. Vehmas M, Peuhkurinen J, Eerikäinen K, Packalén P, Maltamo M (2009) Identification of boreal forest stands with high herbaceous plant diversity using airborne laser scanning. Forest Ecol Manag 257:46–53CrossRefGoogle Scholar
  79. Vierling KT, Bässler C, Brandl R, Vierling LA, Weiss I, Müller J (2011) Spinning a laser web: predicting spider distributions using LiDAR. Ecol Appl 21:577–588CrossRefPubMedGoogle Scholar
  80. Vihervaara P, Kumpula T, Tanskanen A, Burkhard B (2010) Ecosystem services–A tool for sustainable management of human–environment systems. Case study finnish forest Lapland. Ecol Complex 7(3):410–420CrossRefGoogle Scholar
  81. Vihervaara P, Kumpula T, Ruokolainen A, Tanskanen A, Burkhard B (2012) The use of detailed biotope data for linking biodiversity with ecosystem services in Finland. Int J Biodivers Sci Ecosys Serv Manag 8:169–185CrossRefGoogle Scholar
  82. Virkkala R, Lehikoinen A (2014) Patterns of climate-induced density shifts of species: poleward shifts faster in northern boreal birds than in southern birds. Glob Chang Biol 20:2995–3003CrossRefPubMedGoogle Scholar
  83. Virkkala R, Rajasärkkä A (2006) Spatial variation of bird species in landscapes dominated by old-growth forests in northern boreal Finland. Biodivers Conserv 15:2143–2162CrossRefGoogle Scholar
  84. Virkkala R, Rajasärkkä A, Väisänen RA, Vickholm M, Virolainen E (1994) The significance of protected areas for the land birds of southern Finland. Conserv Biol 8:532–544CrossRefGoogle Scholar
  85. Virkkala R, Heikkinen RK, Fronzek S, Kujala H, Leikola N (2013) Does the protected area network preserve bird species of conservation concern in a rapidly changing climate? Biodivers Conserv 22:459–482CrossRefGoogle Scholar
  86. Virkkala R, Heikkinen RK, Lehikoinen A, Valkama J (2014) Matching trends between recent distributional changes of northern-boreal birds and species-climate model predictions. Biol Conserv 172:124–127CrossRefGoogle Scholar
  87. Winter S, McRoberts RE, Bertini R, Bastrup-Birk A, Sanchez C, Chirici G (2011) Essential features of forest biodiversity for assessment purposes. In: Chirici G, Winter S, McRoberts RE (eds) National forest inventories: contributions to forest biodiversity assessments, managing forest ecosystems 20. Springer Science+Business Media B.V, Dordrecht, pp 25–39Google Scholar
  88. Zellweger F, Braunisch V, Baltensweiler A, Bollmann K (2013) Remotely sensed forest structural complexity predicts multi-species occurrence at the landscape scale. Forest Ecol Manag 307:303–312CrossRefGoogle Scholar
  89. Zellweger F, Morsdorf F, Purves RS, Braunisch V, Bollmann K (2014) Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment. Biodivers Conserv 23(2):289–307CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Petteri Vihervaara
    • 1
    Email author
  • Laura Mononen
    • 1
    • 2
  • Ari-Pekka Auvinen
    • 1
  • Raimo Virkkala
    • 1
  • Yihe Lü
    • 3
  • Inka Pippuri
    • 4
  • Petteri Packalen
    • 4
  • Ruben Valbuena
    • 4
  • Jari Valkama
    • 5
  1. 1.Finnish Environment Institute (SYKE)HelsinkiFinland
  2. 2.Department of Geographical and Historical StudiesUniversity of Eastern Finland (UEF)JoensuuFinland
  3. 3.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences (RCEES)Chinese Academy of SciencesBeijingChina
  4. 4.School of Forest SciencesUniversity of Eastern Finland (UEF)JoensuuFinland
  5. 5.Finnish Museum of Natural History (FMNH), Zoological Museum, Monitoring CentreUniversity of HelsinkiHelsinkiFinland

Personalised recommendations