Landscape Ecology

, Volume 30, Issue 3, pp 487–499 | Cite as

Critical loads of nitrogen and sulphur to avert acidification and eutrophication in Europe and China

  • Maximilian Posch
  • Lei Duan
  • Gert Jan Reinds
  • Yu Zhao
Research Article



Forests and other (semi-)natural ecosystems provide a range of ecosystem services, such as purifying water, stabilizing soils and nutrient cycles, and providing habitats for plants and wildlife. Critical loads are a well-established effects-based approach that has been used for assessing the environmental consequences of air pollution on large regional or national scales.

Materials and methods

Typically critical loads of sulphur (S) and nitrogen (N) have been derived separately for characterizing the vulnerability of ecosystems to acidification (by S and N) and eutrophication (by N). In this paper we combine the two approaches and use multiple criteria, such as critical pH and N concentrations in soil solution, to define a single critical load function of N and S.

Results and conclusions

The methodology is used to compute and map critical loads of N and S in two regions of comparable size, Europe and China. We also assess the exceedance of those critical loads under globally modelled present and selected future N and S depositions. We also present an analysis, in which the sensitivity of the critical loads and their exceedances to the choice of the chemical criteria is investigated. As pH and N concentration in soil solution are abiotic variables also linked to plant species occurrence, this approach has the potential for deriving critical loads for plant species diversity.


Critical load function Exceedance Nitrogen Sulphur 



We thank Jean-Francois Lamarque and Frank Dentener for providing the deposition fields of S and N. MP’s and GJR’s work was partially funded by the European Union’s FP7 project ‘ECLAIRE’ (grant agreement no. 282910). LD’s and YZ’s work was partially funded by the Natural Science Foundation of China (project numbers 21221004 and 41205110).


  1. Aherne J, Farrell EP, Hall J, Reynolds B, Hornung M (2001) Using multiple chemical criteria for critical loads of acidity in maritime regions. Water Air Soil Pollut Focus 1:75–90CrossRefGoogle Scholar
  2. Alexeyev VA, Markov MV, Birdsey RA (2004) Statistical data on forest fund of Russia and changing of forest productivity in the second half of the XX-th century. Ministry of Natural Resources of the Russian Federation, St. Petersburg Research Institute of Forestry and St. Petersburg Forest Ecological CenterGoogle Scholar
  3. Bartholome E, Belward AS, Achard F, Bartalev S, Carmona-Moreno C, Eva H, Fritz S, Gregoire M, Mayaux P, Stibig HJ (2002) GLC 2000. Global Land Cover mapping for the year 2000. Project status Nov 2002 (No. EUR 20524 EN). European Commission, Joint Research Centre, IspraGoogle Scholar
  4. Bashkin VN, Kozlov MY, Priputina IV, Abramychev AY, Dedkova IS (1995) Calculationandmapping of critical loads of S, N and acidity on ecosystems of the Northern Asia. Water Air Soil Pollut 85:2395–2400CrossRefGoogle Scholar
  5. Belyazid S, Kurz D, Braun S, Sverdrup H, Rihm B, Hettelingh J-P (2011) A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate. Environ Pollut 159:789–801CrossRefPubMedGoogle Scholar
  6. Bobbink R, Hettelingh J-P (eds) (2011) Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, ISBN 978-90-6960-251-6, Bilthoven, The NetherlandsGoogle Scholar
  7. Bouwman A, Van Vuuren D, Derwent R, Posch M (2002) A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Pollut 141:349–382CrossRefGoogle Scholar
  8. Davies CE, Moss D, Hill MO (2004). EUNIS habitat classification revised 2004. European environment agency, European topic centre on nature protection and biodiversity;
  9. De Vries W, Reinds GJ, Posch M (1994) Assessment of critical loads and their exceedance on European forests using a one-layer steady-state model. Water Air Soil Pollut 72:357–394CrossRefGoogle Scholar
  10. De Vries W, Posch M, Hewitt CN, Jackson AV (2003) Critical levels and critical loads as a tool for air quality management. In: Hewitt AV (ed) Handbook of atmospheric science—principles and applications. Blackwell Science, Oxford, pp 562–602CrossRefGoogle Scholar
  11. De Vries W, Wamelink GWW, Van Dobben H, Kros J, Reinds GJ, Mol-Dijkstra JP, Smart SM, Evans CD, Rowe EC, Belyazid S, Sverdrup HU, Van Hinsberg A, Posch M, Hettelingh J-P, Spranger T, Bobbink R (2010) Use of dynamic soil-vegetation models to assess impacts of nitrogen deposition on plant species composition: an overview. Ecol Appl 20:60–79CrossRefPubMedGoogle Scholar
  12. Duan L, Xie SD, Zhou ZP, Hao JM (2000) Critical loads of acid deposition on soil in China. Water Air Soil Pollut 118:35–51CrossRefGoogle Scholar
  13. Duan L, Hao JM, Xie SD, Zhou ZP, Ye XM (2002) Determining weathering rates of soils in China. Geoderma 110:205–225CrossRefGoogle Scholar
  14. Duan L, Huang YM, Hao JM, Xie SD, Hou M (2004) Vegetation uptake of nitrogen and base cations in China and its role in soil acidification. Sci Total Environ 330:187–198CrossRefPubMedGoogle Scholar
  15. Duan L, Lin Y, Zhu XY, Tang GG, Gao DF, Hao JM (2007) Modeling atmospheric transport and deposition of calcium in China. J Tsinghua Univ 47:1462–1465 (in Chinese)Google Scholar
  16. Duprè C, Stevens CJ, Ranke T, Bleeker A, Peppler-Lisbach C, Gowing DJG, Dise NB, Dorland E, Bobbink R, Diekmann M (2010) Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob Change Biol 16:344–357CrossRefGoogle Scholar
  17. European Soil Bureau network (2004) European soil database (v 2.0) (No. EUR 19945 EN). European Soil Bureau Network and European Commission, IspraGoogle Scholar
  18. FAO-UNESCO (2003) Digital soil map of the world and derived soil properties, CD-ROM. FAO, RomeGoogle Scholar
  19. Forsius M, Posch M, Aherne J, Reinds GJ, Christensen J, Hole L (2010) Assessing the impacts of long-range sulfur and nitrogen deposition on arctic and sub-arctic ecosystems. Ambio 39:136–147CrossRefPubMedCentralPubMedGoogle Scholar
  20. Hao JM, Duan L, Zhou XL, Fu LX (2001) Application of a LRT model to acid rain control in China. Environ Sci Technol 35:3407–3415CrossRefPubMedGoogle Scholar
  21. Hao JM, Qi CL, Duan L, Zhou ZP (2003) Evaluating critical loads of nutrient nitrogen on soils in China using the SMB method. J Tsinghua Univ 43:849–853 (in Chinese)Google Scholar
  22. Henriksen A, Kämäri J, Posch M, Wilander A (1992) Critical loads of acidity: nordic surface waters. Ambio 21:356–363Google Scholar
  23. Hettelingh J-P, Sverdrup H, Zhao D (1995a) Deriving critical loads for Asia. Water Air Soil Pollut 85:2565–2570CrossRefGoogle Scholar
  24. Hettelingh J-P, Posch M, De Smet PAM, Downing RJ (1995b) The use of critical loads in emission reduction agreements in Europe. Water Air Soil Pollut 85:2381–2388CrossRefGoogle Scholar
  25. Hettelingh J-P, Posch M, De Smet PAM (2001) Multi-effect critical loads used in multi-pollutant reduction agreements in Europe. Water Air Soil Pollut 130:1133–1138CrossRefGoogle Scholar
  26. Hettelingh J-P, Posch M, Slootweg J, Reinds GJ, Spranger T, Tarrason L (2007) Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. Water Air Soil Pollut Focus 7:379–384CrossRefGoogle Scholar
  27. Hettelingh J-P, Posch M, Velders GJM, Ruyssenaars P, Adams M, De Leeuw F, Lükewille A, Maas R, Sliggers J, Slootweg J (2013) Assessing interim objectives for acidification, eutrophication and ground-level ozone of the EU National Emission Ceilings Directive with 2001 and 2012 knowledge. Atmos Environ 75:129–140CrossRefGoogle Scholar
  28. Hodson ME, Langan SJ (1999) Considerations of uncertainty in setting critical loads of acidity of soils: the role of weathering rate determination. Environ Pollut 106:73–81CrossRefPubMedGoogle Scholar
  29. ICP Modelling and Mapping (2004) Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends. Texte 52/04, Federal Environmental Agency, Berlin, Germany [for latest updates see
  30. Jacobsen C, Rademacher P, Meesenburg H, Meiwes KJ (2002) Element contents in tree compartments—literature study and data collection [in German]. Niedersächsische Forstliche Versuchsanstalt, Göttingen, p 80Google Scholar
  31. Jeffries DS, Lam DCL (1993) Assessment of the effect of acidic deposition on Canadian lakes: determination of critical loads for sulphate deposition. Water Sci Technol 28:183–187Google Scholar
  32. JRC (2006) The European Soil Data Base. Distribution version v2.0. Retrieved 01-01-2007,
  33. Kuylenstierna JCI, Rodhe H, Cinderby S, Hicks K (2001) Acidification in developing countries: ecosystem sensitivity and the critical load approach on a global scale. Ambio 30:20–28PubMedGoogle Scholar
  34. Lamarque J-F, Dentener F, McConnell J, Ro C-U, Shaw M, Vet R, Bergmann D, Cameron-Smith P, Dalsoren S, Doherty R, Faluvegi G, Ghan SJ, Josse B, Lee YH, MacKenzie IA, Plummer D, Shindell DT, Skeie RB, Stevenson DS, Strode S, Zeng G, Curran M, Dahl-Jensen D, Das S, Fritzsche D, Nolan M (2013) Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes. Atmos Chem Phys 13:7997–8018CrossRefGoogle Scholar
  35. Lee DS, Pacyna JM (1999) An industrial emissions inventory of calcium for Europe. Atmos Environ 33:1687–1697CrossRefGoogle Scholar
  36. Leemans R, Van den Born GJ (1994) Determining the potential distribution of vegetation, crops and agricultural productivity. Water Air Soil Pollut 76:133–161CrossRefGoogle Scholar
  37. New M, Hulme M, Jones PD (1999) Representing twentieth century space-time climate variability. Part 1: development of a 1961–90 mean monthly terrestrial climatology. J Clim 12:829–856CrossRefGoogle Scholar
  38. Nilsson J, Grennfelt P (eds) (1988) Critical loads for sulphur and nitrogen: Miljørapport 15. Nordic Council of Ministers, CopenhagenGoogle Scholar
  39. Pardo LH, Fenn ME, Goodale CL, Geiser LH, Driscoll CT, Allen EB, Baron JS, Bobbink R, Bowman WD, Clark CM, Emmett B, Gilliam FS, Greaver TL, Hall SJ, Lilleskov EA, Liu L, Lynch JA, Nadelhoffer KJ, Perakis SS, Robin-Abbott MJ, Stoddard JL, Weathers KC, Dennis RL (2011) Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecol Appl 21:3049–3082CrossRefGoogle Scholar
  40. Posch M, De Vries W (1999) Derivation of critical loads by steady-state and dynamic soil models. In: Langan SJ (ed) The impact of nitrogen deposition on natural and semi-natural ecosystems. Kluwer, Dordrecht, pp 213–234CrossRefGoogle Scholar
  41. Posch M, Hettelingh J-P, De Smet PAM (2001) Characterization of critical load exceedances in Europe. Water Air Soil Pollut 130:1139–1144CrossRefGoogle Scholar
  42. Posch M, Aherne J, Hettelingh J-P (2011) Nitrogen critical loads using biodiversity-related critical limits. Environ Pollut 159:2223–2227CrossRefPubMedGoogle Scholar
  43. Prentice IC, Sykes MT, Cramer W (1993) A simulation model for the transient effects of climate change on forest landscapes. Ecol Model 65:51–70CrossRefGoogle Scholar
  44. Reinds GJ, De Vries W (2010) Uncertainties in critical loads and target loads of sulphur and nitrogen for European forests: analysis and quantification. Sci Total Environ 408:1960–1970CrossRefPubMedGoogle Scholar
  45. Reinds GJ, Posch M, De Vries W, Slootweg J, Hettelingh J-P (2008) Critical loads of sulphur and nitrogen for terrestrial ecosystems in Europe and northern Asia using different soil chemical criteria. Water Air Soil Pollut 193:269–287CrossRefGoogle Scholar
  46. Reis S, Grennfelt P, Klimont Z, Amann M, ApSimon H, Hettelingh J-P, Holland M, Le Gall A-C, Maas R, Posch M, Spranger T, Sutton MA, Williams M (2012) From acid rain to climate change. Science 338:1153–1154CrossRefPubMedGoogle Scholar
  47. Schelhaas MJ, Varis S, Schuck A, Nabuurs GJ (1999) EFISCEN’s european forest resource database. European Forest Institute, JoensuuGoogle Scholar
  48. Schelhaas MJ, Eggers J, Lindner M, Nabuurs GJ, Pussinen A, Paivinen R, Schuck A, Verkerk PJ, Van der Werf DC (2007) Model documentation for the European Forest Information Scenario Model (EFISCEN 3.1.3). Alterra Report 1559, Wageningen, The NetherlandsGoogle Scholar
  49. SinoMaps (1984) Atlas of the People’s Republic of China, 3rd ed (in Chinese). SinoMaps Press, BeijingGoogle Scholar
  50. Skeffington RA, Whitehead PG, Heywood E, Hall JR, Wadsworth RA, Reynolds B (2007) Estimating uncertainty in terrestrial critical loads and their exceedances at four sites in the UK. Sci Total Environ 382:199–213CrossRefPubMedGoogle Scholar
  51. Sverdrup H, De Vries W (1994) Calculating critical loads for acidity with the simple mass balance method. Water Air Soil Pollut 72:143–162CrossRefGoogle Scholar
  52. Van Loon M, Tarrason L, Posch M (2005) Modelling base cations in Europe. EMEP Technical Report MSC-W 2/2005. Norwegian Meteorological Institute, OsloGoogle Scholar
  53. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  54. Wamelink GWW, Goedhart PW, Malinowska AH, Frissel JY, Wegman RJM, Slim PA, Van Dobben HF (2011) Ecological ranges for the pH and NO3 of syntaxa: a new basis for the estimation of critical loads for acid and nitrogen deposition. J Veg Sci 22:741–749CrossRefGoogle Scholar
  55. Wu ZY (ed) (1980) Chinese Vegetation (in Chinese). Science Press, BeijingGoogle Scholar
  56. Xiong Y, Li QK (eds) (1987). Chinese Soils, 2nd ed (in Chinese). Science Press, BeijingGoogle Scholar
  57. Zak SK, Beven KJ (1999) Equifinality, sensitivity and predictive uncertainty in the estimation of critical loads. Sci Total Environ 236:191–214CrossRefGoogle Scholar
  58. Zhao Y, Duan L, Larssen T, Hu LH, Hao JM (2007) Simultaneous assessment of depositions of base cations, sulfur and nitrogen using an extended critical load function for acidification. Environ Sci Technol 41:1815–1820CrossRefPubMedGoogle Scholar
  59. Zhao Y, Duan L, Lei Y, Xing J, Nielsen CP, Hao JM (2011) Will PM control undermine China’s efforts to reduce soil acidification? Environ Pollut 159:2726–2732CrossRefPubMedGoogle Scholar
  60. Zhu XY, Duan L, Tang GG, Hao JM, Dong GX (2004) Estimation of atmospheric emissions of base cations in China. J Tsinghua Univ 44:1176–1179 (in Chinese)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Maximilian Posch
    • 1
  • Lei Duan
    • 2
  • Gert Jan Reinds
    • 3
  • Yu Zhao
    • 4
  1. 1.Coordination Centre for Effects (CCE)BilthovenThe Netherlands
  2. 2.School of EnvironmentTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.AlterraWageningen University and Research Centre (WUR)WageningenThe Netherlands
  4. 4.School of the EnvironmentNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations