Advertisement

Landscape Ecology

, Volume 30, Issue 3, pp 561–577 | Cite as

ESLab application to a boreal watershed in southern Finland: preparing for a virtual research environment of ecosystem services

  • Maria Holmberg
  • Anu Akujärvi
  • Saku Anttila
  • Lauri Arvola
  • Irina Bergström
  • Kristin Böttcher
  • Xiaoming Feng
  • Martin Forsius
  • Inese Huttunen
  • Markus Huttunen
  • Yki Laine
  • Heikki Lehtonen
  • Jari Liski
  • Laura Mononen
  • Katri Rankinen
  • Anna Repo
  • Vanamo Piirainen
  • Pekka Vanhala
  • Petteri Vihervaara
Research Article

Abstract

We report on preparatory work to develop a virtual laboratory for ecosystem services, ESLab, and demonstrate its pilot application in southern Finland. The themes included in the pilot are related to biodiversity conservation, climate mitigation and eutrophication mitigation. ESLab is a research environment for ecosystem services (ES), which considers ES indicators at different landscape scales: habitats, catchments and municipalities and shares the results by a service that utilizes machine readable interfaces. The study area of the pilot application is situated in the boreal region of southern Finland and covers 14 municipalities and ten catchments including forested, agricultural and nature conservation areas. We present case studies including: present carbon budgets of natural ecosystems; future carbon budgets with and without the removal of harvest residues for bioenergy production; and total phosphorus and nitrogen future loads under climate and agricultural yield and price scenarios. The ESLab allows researchers to present and share the results as visual maps, statistics and graphs. Our further aim is to provide a toolbox of easily accessible virtual services for ES researchers, to illustrate the comprehensive societal consequences of multiple decisions (e.g. concerning land use, fertilisation or harvesting) in a changing environment (climate, deposition).

Keywords

Biodiversity Eutrophication GIS Forestry Agriculture Carbon budget 

Notes

Acknowledgments

We thank Bojie Fu and two anonymous reviewers for valuable comments. The work was supported by the Academy of Finland by the projects “CLIMES Impacts of climate change on multiple ecosystem services: Processes and adaptation options at landscape scales” (MH, AA, KB, LM; Decision number 256231), LifeWatch (Decision number 271628) and MARISPLAN Marine spatial Planning in a changing climate (IH, VS; Decision number 140871; HL Decision number 140840). The work was also supported by the External Cooperation Program of the Chinese Academy of Sciences (GJHZ1215). Funding support was also received from the European Commission through the 7th Framework Programme projects ExpeER (SA; Grant agreement no. 262060) and OpenNESS (LM; Grant agreement no. 308428) as well as through the Life project MONIMET (MH, AA, KB; Grant agreement LIFE12 ENV/FIN/000409). We gratefully acknowledge the support of the funding agencies. We thank Inka Pippuri and Petteri Packalén, University of Eastern Finland, for calculating airborne laser scanning data, and Ari-Pekka Auvinen, Raimo Virkkala and bird watching organisations for preparation of bird data. We acknowledge the contribution of Maximilian Posch, Coordination Centre for Effects, RIVM, the Netherlands, in providing deposition values, and that of Ritva Koskinen in graphics support.

Supplementary material

10980_2014_122_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 23 kb)

References

  1. Aherne J, Posch M, Forsius M, Lehtonen A, Härkönen K (2012) Impacts of forest biomass removal on soil nutrient status under climate change: a catchment-based modelling study for Finland. Biogeochemistry 107(1–3):471–488CrossRefGoogle Scholar
  2. Amann M, Bertok I, Borken-Kleefeld J, Cofala J, Heyes C, Höglund-Isaksson L, Klimont Z, Nguyen B, Posch M, Rafaj P, Sandler R, Schöpp W, Wagner F, Winiwarter W (2011) Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environ Model Softw 26(12):1489–1501Google Scholar
  3. Ames DP, Horsburgh JS, Cao Y, Kadlec J, Whiteaker T, Valentine D (2012) HydroDesktop: web services-based software for hydrologic data discovery, download, visualization, and analysis. Environ Model Softw 37:146–156CrossRefGoogle Scholar
  4. Bagstad KJ, Johnson GW, Voigt B, Villa F (2013a) Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying actual services. Ecosyst Serv 4:117–125CrossRefGoogle Scholar
  5. Bagstad KJ, Semmens DJ, Waage S, Winthrop R (2013b) A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst Serv 5:27–39CrossRefGoogle Scholar
  6. Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla E, Smith AB (2012) Approaching a state shift in Earth’s biosphere. Nature 486(7401):52–58Google Scholar
  7. Bentsen NS, Felby C (2012) Biomass for energy in the European Union: a review of bioenergy resource assessments. Biotechnol Biofuels 5(1):25CrossRefPubMedCentralPubMedGoogle Scholar
  8. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20(1):30–59Google Scholar
  9. Böttcher H, Freibauer A, Obersteiner M, Schulze E-D (2008) Uncertainty analysis of climate change mitigation options in the forestry sector using a generic carbon budget model. Ecol Model 213(1):45–62CrossRefGoogle Scholar
  10. Böttcher H, Verkerk PJ, Gusti M, Havlik P, Grassi G (2012) Projection of the future EU forest CO2 sink as affected by recent bioenergy policies using two advanced forest management models. Glob Chang Biol Bioenergy 4(6):773–783CrossRefGoogle Scholar
  11. Bradford JB, D’Amato AW (2012) Recognizing trade-offs in multi-objective land management. Front Ecol Environ 10(4):210–216CrossRefGoogle Scholar
  12. Bull KR, Achermann B, Bashkin V, Chrast R, Fenech G, Forsius M, Gregor HD, Guardans R, Haubmann T, Hayes F, Hettelingh JP, Johannessen T, Krzyzanowski M, Kucera V, Kvaeven B, Lorenz M, Lundin L, Mills G, Posch M, Skjelkvåle BL, Ulstein MJ (2001) Coordinated effects monitoring and modelling for developing and supporting international air pollution control agreements. Water Air Soil Pollut 130(1–4):119–130Google Scholar
  13. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J-F, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328(5982):1164–1168Google Scholar
  14. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59–67Google Scholar
  15. CBD (2010) Convention on biological diversity. Strategic plan for biodiversity 2011–2020, including aichi biodiversity targets. Available from http://www.cbd.int/sp/. Accessed April 2014
  16. Chapin III FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405(6783):234–242Google Scholar
  17. Crossman ND, Bryan BA, de Groot RS, Lin Y-P, Minang PA (2013) Land science contributions to ecosystem services. Curr Opin Environ Sustain 5(5):509–514CrossRefGoogle Scholar
  18. Dick J, Maes J, Smith RI, Paracchini ML, Zulian G (2014) Cross-scale analysis of ecosystem services identified and assessed at local and European level. Ecol Indic 38:20–30CrossRefGoogle Scholar
  19. Dirnböck T, Grandin U, Bernhardt-Römermann M, Beudert B, Canullo R, Forsius M, Grabner M-T, Holmberg M, Kleemola S, Lundin L, Mirtl M, Neumann M, Pompei E, Salemaa M, Starlinger F, Staszewski T, Uziębło AK (2014) Forest floor vegetation response to nitrogen deposition in Europe. Glob Chang Biol 20(2):429–440Google Scholar
  20. EC (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Available from http://ec.europa.eu/environment/nature/legislation/habitatsdirective/ Accessed April 2014
  21. EC (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Available from http://ec.europa.eu/environment/water/water-framework/index_en.html Accessed April 2014
  22. EC (2011a) Our life insurance, our natural capital: an EU biodiversity strategy to 2020. Communication from the commission to the European parliament, the council, the economic and social committee and the committee of the regions. COM (2011) 244. Available from http://ec.europa.eu/environment/nature/biodiversity/comm2006/2020.htm Accessed April 2014
  23. EC (2011b) Open data. An engine for innovation, growth and transparent governance. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM (2011) 882 final. Available from http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0882&rid=2 Accessed April 2014
  24. Evangelidis K, Ntouros K, Makridis S, Papatheodorou C (2014) Geospatial services in the cloud. Comput Geosci 63:116–122CrossRefGoogle Scholar
  25. Evans D (2012) Building the European Union’s Natura 2000 network. Nat Conserv 1:11–26CrossRefGoogle Scholar
  26. Feng M, Liu SG, Euliss NH, Young C, Mushet DM (2011) Prototyping an online wetland ecosystem services model using open model sharing standards. Environ Model Softw 26(4):458–468CrossRefGoogle Scholar
  27. Forsius M, Anttila S, Arvola L, Bergström I, Hakola H, Heikkinen HI, Helenius J, Hyvärinen M, Jylhä K, Karjalainen J, Keskinen T, Laine K, Nikinmaa E, Peltonen-Sainio P, Rankinen K, Reinikainen M, Setälä H, Vuorenmaa J (2013) Impacts and adaptation options of climate change on ecosystem services in Finland: a model based study. Curr Opin Environ Sustain 5(1):26–40Google Scholar
  28. Fu B, Wang S, Su C, Forsius M (2013) Linking ecosystem processes and ecosystem services. Curr Opin Environ Sustain 5(1):4–10CrossRefGoogle Scholar
  29. Haaspuro T (2013) LUONNIKAS—laskentatyökalu kunnille luontoperäisten kasvihuonekaasujen nielujen ja lähteiden arviointiin. In Finnish. Novia publikation och produktion, series A. Yrkeshögskolan Novia, Fabriksgatan 1, Vasa, Finland. ISBN: 978-952-5839-75-3. Available from http://www.novia.fi/assets/filer/Publikationer/Serie-A-Artiklar/LUONNIKAS-laskentatykalu-kunnille_2.2013.pdf Accessed April 2014
  30. Hakala K, Hannukkala AO, Huusela-Veistola E, Jalli M, Peltonen-Sainio P (2011) Pests and diseases in a changing climate: a major challenge for Finnish crop production. Agric Food Sci 20(1):3–14CrossRefGoogle Scholar
  31. Hardisty A, Roberts D, Biodiversity Informatics C (2013) A decadal view of biodiversity informatics: challenges and priorities. BMC Ecol 13(1):16CrossRefPubMedCentralPubMedGoogle Scholar
  32. Hettelingh JP, Posch M, Velders GJM, Ruyssenaars P, Adams M, de Leeuw F, Lükewille A, Maas R, Sliggers J, Slootweg J (2013) Assessing interim objectives for acidification, eutrophication and ground-level ozone of the EU National Emission Ceilings Directive with 2001 and 2012 knowledge. Atmos Environ 75:129–140Google Scholar
  33. Huttunen I, Huttunen M, Piirainen V, Korppoo M, Lepistö A, Räike A, Tattari S, Vehviläinen B (2014) National scale nutrient loading model for Finnish watersheds - VEMALA. Environ Model Assess (in review)Google Scholar
  34. IPCC (2000) Emission scenarios. Cambridge University Press, CambridgeGoogle Scholar
  35. IPCC (2007) Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Geneva, SwitzerlandGoogle Scholar
  36. Jaakkola E, Tattari S, Ekholm P, Pietola L, Posch M, Bärlund I (2012) Simulated effects of gypsum amendment on phosphorus losses from agricultural soils. Agric Food Sci 21(3):292–306Google Scholar
  37. Jackson B, Pagella T, Sinclair F, Orellana, B, Henshaw A, Reynolds B, McIntyre N, Wheater H, Eycott A (2013) Polyscape: a GIS mapping framework providing efficient and spatially explicit landscape-scale valuation of multiple ecosystem services. Landscape Urban Plan 112:74–88Google Scholar
  38. Jax K, Barton DN, Chan KMA, de Groot R, Doyle U, Eser U, Görg C, Gómez-Baggethun E, Griewald Y, Haber W, Haines-Young R, Heink U, Jahn T, Joosten H, Kerschbaumer L, Korn H, Luck GW, Matzdorf B, Muraca B, Neßhöver C, Norton B, Ott K, Potschin M, Rauschmayer F, von Haaren C, Wichmann S (2013) Ecosystem services and ethics. Ecol Econ 93:260–268Google Scholar
  39. Jylhä K, Laapas M, Ruosteenoja K, Arvola L, Drebs A, Kersalo J, Saku S, Gregow H, Hannula H-R, Pirinen P (2014) Climate variability and trends in the Valkea-Kotinen region, southern Finland: comparisons between the past, current and projected climates. Boreal Environ Res 19(Suppl. A):4–30Google Scholar
  40. Kolstad CD (2000) Environmental economics. Oxford University Press, New YorkGoogle Scholar
  41. Kopperoinen L, Itkonen P, Niemelä J (2014) Using expert knowledge in combining green infrastructure and ecosystem services in land planning: an insight into a new place-based methodology. Landscape Ecol 29:1361–1375CrossRefGoogle Scholar
  42. Kraxner F, Nordström E-M, Havlík P, Gusti M, Mosnier A, Frank S, Valin H, Fritz S, Fuss S, Kindermann G, McCallum I, Khabarov N, Böttcher H, See L, Aoki K, Schmid E, Máthé L, Obersteiner M (2013) Global bioenergy scenarios - future forest development, land-use implications, and trade-offs. Biomass Bioenergy 57:86–96Google Scholar
  43. Lautenbach S, Volk M, Strauch M, Whittaker G, Seppelt R (2013) Optimization-based trade-off analysis of biodiesel crop production for managing an agricultural catchment. Environ Model Softw 48:98–112CrossRefGoogle Scholar
  44. Lehtomäki J, Moilanen A (2013) Methods and workflow for spatial conservation prioritization using Zonation. Environ Model Softw 47:128–137CrossRefGoogle Scholar
  45. Lehtonen H (2004) Impact of de-coupling agricultural support on dairy investment and milk production volume in Finland. Acta Agric Scand, Sect C 1(1):46–62Google Scholar
  46. Lehtonen H, Liu X, Purola T, Rötter R, Palosuo T (2014) Farm level dynamic economic modelling of crop rotation with adaptation practices. MACSUR Mid-term Scientific Conference. Sassari, ItalyGoogle Scholar
  47. Liski J, Perruchoud D, Karjalainen T (2002) Increasing carbon stocks in the forest soils of western Europe. For Ecol Manag 169(1–2):159–175CrossRefGoogle Scholar
  48. Liski J, Lehtonen A, Palosuo T, Peltoniemi M, Eggers T, Muukkonen P, Mäkipää R (2006) Carbon accumulation in Finland’s forests 1922–2004 – an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Ann For Sci 63(7):687–697Google Scholar
  49. MA (2005) Millennium ecosystem assessment: living beyond our means—natural assets and human well-being. World Resources Institute, Washington DC, USAGoogle Scholar
  50. Mace GM, Norris K, Fitter AH (2012) Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol 27(1):19–26CrossRefPubMedGoogle Scholar
  51. Maes J, Paracchini ML, Zulian G, Dunbar MB, Alkemade R (2012) Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol Conserv 155:1–12CrossRefGoogle Scholar
  52. Mikkonen N, Moilanen A (2013) Identification of top priority areas and management landscapes from a national Natura 2000 network. Environ Sci Policy 27:11–20CrossRefGoogle Scholar
  53. Mooney H, Larigauderie A, Cesario M, Elmquist T, Hoegh-Guldberg O, Lavorel S, Mace GM, Palmer M, Scholes R, Yahara T (2009) Biodiversity, climate change, and ecosystem services. Curr Opin Environ Sustain 1(1):46–54Google Scholar
  54. Ortiz CA, Liski J, Gärdenäs AI, Lehtonen A, Lundblad M, Stendahl J, Ågren GI, Karltun E (2013) Soil organic carbon stock changes in Swedish forest soils—a comparison of uncertainties and their sources through a national inventory and two simulation models. Ecol Model 251:221–231Google Scholar
  55. Palosuo T, Liski J, Trofymow JA, Titus BD (2005) Litter decomposition affected by climate and litter quality—testing the Yasso model with litterbag data from the Canadian intersite decomposition experiment. Ecol Model 189(1–2):183–198CrossRefGoogle Scholar
  56. Peltoniemi M, Mäkipää R, Liski J, Tamminen P (2004) Changes in soil carbon with stand age—an evaluation of a modelling method with empirical data. Glob Chang Biol 10(12):2078–2091CrossRefGoogle Scholar
  57. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummitt N, Butchart SHM, Cardoso AC, Coops NC, Dulloo E, Faith DP, Freyhof J, Gregory RD, Heip C, Höft R, Hurtt G, Jetz W, Karp DS, McGeoch MA, Obura D, Onoda Y, Pettorelli N, Reyers B, Sayre R, Scharlemann JPW, Stuart SN, Turak E, Walpole M, Wegmann M (2013) Essential biodiversity variables. Science 339(6117):277–278Google Scholar
  58. Pooley SP, Mendelsohn JA, Milner-Gulland EJ (2014) Hunting down the chimera of multiple disciplinarity in conservation science. Conserv Biol 28(1):22–32CrossRefPubMedCentralPubMedGoogle Scholar
  59. Porto M, Correia O, Beja P (2014) Optimization of landscape services under uncoordinated management by multiple landowners. PLoS ONE 9(1):e86001CrossRefPubMedCentralPubMedGoogle Scholar
  60. Potschin M, Haines-Young R (2011) Ecosystem services: exploring a geographical perspective. Prog Phys Geogr 35(5):575–594CrossRefGoogle Scholar
  61. Potschin M, Haines-Young R (2013) Landscapes, sustainability and the place-based analysis of ecosystem services. Landscape Ecol 28(6):1053–1065CrossRefGoogle Scholar
  62. Primmer E, Paloniemi R, Similä J, Barton DN (2013) Evolution in Finland’s forest biodiversity conservation payments and the institutional constraints on establishing new policy. Soc Nat Res 26(10):1137–1154CrossRefGoogle Scholar
  63. Puustinen M, Turtola E, Kukkonen M, Koskiaho J, Linjama J, Niinioja R, Tattari S (2010) VIHMA-A tool for allocation of measures to control erosion and nutrient loading from Finnish agricultural catchments. Agric Ecosyst Environ 138(3–4):306–317Google Scholar
  64. Rapeli L (2014) Natural resource economy. Governance by GeoDesign. In: Aronia Research Groups 2013. Forsknings- och utvecklingsinstitutet Aronia. AB Yrkeshögskolan vid Åbo Akademi. Available from http://www.novia.fi/assets/Aronia/report-of-activities/Aronia-Research-2013.pdf Accessed April 2014
  65. Räsänen A (2010) Kiintoaineen ja kasviravinteiden vesistökuormituksen riskialuekartoitus Aurajoen valuma-alueella. (In Finnish). Jyväskylä UniversityGoogle Scholar
  66. Redford KH, Adams WM (2009) Payment for ecosystem services and the challenge of saving nature. Conserv Biol 23(4):785–787CrossRefPubMedGoogle Scholar
  67. Repo A, Böttcher H, Kindermann G, Liski J (2014) Sustainability of forest bioenergy in Europe: land-use-related carbon dioxide emissions of forest harvest residues. GCB Bioenergy:n/a-n/aGoogle Scholar
  68. Ridder B (2008) Questioning the ecosystem services argument for biodiversity conservation. Biodivers Conserv 17(4):781–790CrossRefGoogle Scholar
  69. Rötter RP, Höhn J, Trnka M, Fronzek S, Carter TR, Kahiluoto H (2013) Modelling shifts in agroclimate and crop cultivar response under climate change. Ecol Evol 3(12):4197–4214CrossRefPubMedCentralPubMedGoogle Scholar
  70. Ruoho-Airola T, Hatakka T, Kyllönen K, Makkonen U, Porvari P (2014) Temporal trends in the bulk deposition and atmospheric concentration of acidifying compounds and trace elements in the Finnish Integrated Monitoring catchment Valkea-Kotinen during 1988–2011. Boreal Environ Res 19(Suppl. A):31–46Google Scholar
  71. Similä J, Pölönen I, Fredrikson J, Primmer E, Horne P (2014) Biodiversity protection in private forests: an analysis of compliance. J Environ Law 26(1):83–103CrossRefGoogle Scholar
  72. Simpson D, Benedictow A, Berge H, Bergström R, Emberson LD, Fagerli H, Flechard CR, Hayman GD, Gauss M, Jonson JE, Jenkin ME, Nyíri A, Richter C, Semeena VS, Tsyro S, Tuovinen JP, Valdebenito Á, Wind P (2012) The EMEP MSC-W chemical transport model - technical description. Atmos Chem Phys 12(16):7825–7865Google Scholar
  73. Smith P, Ashmore MR, Black HIJ, Burgess PJ, Evans CD, Quine TA, Thomson AM, Hicks K, Orr HG (2013) REVIEW: the role of ecosystems and their management in regulating climate, and soil, water and air quality. J Appl Ecol 50(4):812–829Google Scholar
  74. Statistics Finland (2013) Greenhouse gas emissions in Finland 1990-2011. National Inventory Report under the UNFCCC and the Kyoto Protocol. Available from http://unfccc.int/files/national_reports/annex_i_ghg_inventories/national_inventories_submissions/application/zip/fin-2011-nir-15apr.zip Accessed April 2014
  75. Tietäväinen H, Tuomenvirta H, Venäläinen A (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. Int J Climatol 30(15):2247–2256CrossRefGoogle Scholar
  76. Tuomi M, Rasinmäki J, Repo A, Vanhala P, Liski J (2011) Soil carbon model Yasso07 graphical user interface. Environ Model Softw 26(11):1358–1362CrossRefGoogle Scholar
  77. Vihervaara P, Rönka M, Walls M (2010) Trends in ecosystem service research: early steps and current drivers. Ambio 39(4):314–324CrossRefPubMedCentralPubMedGoogle Scholar
  78. Vihervaara P, Kumpula T, Ruokolainen A, Tanskanen A, Burkhard B (2012) The use of detailed biotope data for linking biodiversity with ecosystem services in Finland. Int J Biodivers Sci, Ecosyst Serv Manag 8(1–2):169–185CrossRefGoogle Scholar
  79. Vihervaara P, Mononen L, Auvinen A-P, Virkkala R, Lü Y-H, Pippuri I, Packalén P, Valbuena R, Valkama J How to integrate remotely sensed data and biodiversity for ecosystem assessments at landscape scale. Landscape Ecol (this special issue)Google Scholar
  80. Wischmeier WH, Smith DD (1965) Predicting rainfall-erosion losses from cropland east of the rocky mountains USDAGoogle Scholar
  81. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planing USDAGoogle Scholar
  82. Zanchi G, Pena N, Bird N (2012) Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. Glob Chang Biol Bioenergy 4(6):761–772CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Maria Holmberg
    • 1
  • Anu Akujärvi
    • 1
  • Saku Anttila
    • 2
  • Lauri Arvola
    • 4
  • Irina Bergström
    • 1
  • Kristin Böttcher
    • 2
  • Xiaoming Feng
    • 5
  • Martin Forsius
    • 1
  • Inese Huttunen
    • 3
  • Markus Huttunen
    • 3
  • Yki Laine
    • 2
  • Heikki Lehtonen
    • 6
  • Jari Liski
    • 1
  • Laura Mononen
    • 1
  • Katri Rankinen
    • 1
  • Anna Repo
    • 1
  • Vanamo Piirainen
    • 3
  • Pekka Vanhala
    • 1
  • Petteri Vihervaara
    • 1
  1. 1.Natural Environment CentreFinnish Environment InstituteHelsinkiFinland
  2. 2.Data and Information CentreFinnish Environment InstituteHelsinkiFinland
  3. 3.Freshwater CentreFinnish Environment InstituteHelsinkiFinland
  4. 4.Lammi Biological StationHelsinki UniversityLammiFinland
  5. 5.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences (RCEES)Chinese Academy of SciencesBeijingChina
  6. 6.Economic ResearchMTT Agrifood ResearchHelsinkiFinland

Personalised recommendations