Landscape Ecology

, Volume 30, Issue 1, pp 125–140 | Cite as

Do farming practices affect natural enemies at the landscape scale?

  • Camille Puech
  • Sylvain Poggi
  • Jacques Baudry
  • Stéphanie Aviron
Research Article


Farming practices are rarely considered in the description of agricultural landscapes. However, the variety of cropping systems creates a particular kind of heterogeneity which can strongly affect the diversity of species living in agro-ecosystems, and consequently the ecosystem services they provide. In this study, we investigate the effects of landscape composition and configuration of organic and conventional farming practices on three groups of aphids’ natural enemies, compared to field habitat quality and land cover heterogeneity. A field survey was carried out in 2012 and 2013 in western France (Brittany). Ladybirds, carabid beetles and parasitoids were sampled in 40 pairs of organic and conventional winter wheat fields, distributed along a landscape gradient of organic farming areas. The relationships between farming practices and natural enemies were investigated with a PLS-path modeling approach, hardly ever used in ecology but presenting numerous advantages to analyze multivariate systems. Results showed that abundance and species richness of natural enemies were mainly affected by local farming practices, with a higher diversity in organic fields. To a lesser extent, landscapes also affected natural enemies, but only in relation to the length and configuration of hedgerows. Our results open up avenues for the design of agricultural landscapes since our results suggest that natural enemy diversity can be enhanced without a specific organization of organic fields. We discuss methodological issues regarding the description and the analysis of farming practices at the landscape scale. We argue that such investigations require high quality maps covering large spatial extents, and the use of statistical tools providing a good handling of complex relationships occurring in agro-ecosystems.


PLS-path modeling Organic farming Biological control Agricultural landscape Hedgerows Ladybirds Carabid beetles Parasitoids 



C.P. has a PhD grant from INRA and the Brittany Region. Funding for field work was provided by the ANR Landscaphid Project and the Zone Atelier Armorique. We thank students (M. Poupelin, E. Cabon, M. Le Danvic, L. Meneau, Z. Mallet and E. Lalechere) for field assistance. We thank the farmers who gave permission to sample in their fields and who answered our questions. We thank G. Sanchez for his advice on models construction. S.P. acknowledges the INRA metaprogram “Sustainable Management of Crop Health” for funding the COPACABANA Project. We finally thank S. Baudry for English editing.

Supplementary material

10980_2014_103_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 29 kb)


  1. Agence Bio (2012) Annuaire officiel des opérateurs notifiés en agriculture biologique. French agency for the Organic Farming Development and Promotion. Available from Accessed Apr 2012
  2. Ali AD, Reagan TE (1985) Vegetation manipulation impact on predator and prey populations in Louisiana sugarcane ecosystems. J Econ Entomol 78(6):1409–1414Google Scholar
  3. Aviron S, Burel F, Baudry J, Schermann N (2005) Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity. Agric Ecosyst Environ 108:205–217CrossRefGoogle Scholar
  4. Baessler C, Klotz S (2006) Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric Ecosyst Environ 115:43–50CrossRefGoogle Scholar
  5. Barbault R (1995) Biodiversity dynamics: from population and community ecology approaches to a landscape ecology point of view. Landsc Urban Plan 31:89–98CrossRefGoogle Scholar
  6. Barbosa P (1998) Conservation biological control. Academic Press, San DiegoGoogle Scholar
  7. Baudry J, Bunce RGH, Burel F (2000) Hedgerows: an international perspective on their origin, function and management. J Environ Manag 60:7–22CrossRefGoogle Scholar
  8. Bengtsson J, Ahnström J, Weibull A-C (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269CrossRefGoogle Scholar
  9. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182–188CrossRefGoogle Scholar
  10. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc Lond B 273:1715–1727CrossRefGoogle Scholar
  11. Boussard H, Baudry J (2014) Chloe212: a software for landscape pattern analysis. INRA, SAD-Paysage.
  12. Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der vegetationskunde. Springer, New-YorkCrossRefGoogle Scholar
  13. Burel F (1996) Hedgerows and their role in agricultural landscapes. Crit Rev Plant Sci 15(2):169–190CrossRefGoogle Scholar
  14. Burel F, Baudry J (1990) Structural dynamic of a hedgerow network landscape in Brittany France. Landscape Ecol 4(4):197–210CrossRefGoogle Scholar
  15. Burel F, Baudry J (2003) Landscape ecology : concepts, methods, and applications. Science Publishers, EnfieldGoogle Scholar
  16. Burel F, Baudry J, Butet A, Clergeau P, Delettre Y, Le Coeur D, Dubs F, Morvan N, Paillat G, Petit S, Thenail C, Brunel E, Lefeuvre J-C (1998) Comparative biodiversity along a gradient of agricultural landscapes. Acta Oecol 19(1):47–60Google Scholar
  17. Burel F, Butet A, Delettre YR, Millàn de la Peña N (2004) Differential response of selected taxa to landscape context and agricultural intensification. Landsc Urban Plan 67:195–204CrossRefGoogle Scholar
  18. Burie J-B, Langlais M, Calonnec A (2011) Switching from a mechanistic model to a continuous model to study at different scales the effect of vine growth on the dynamic of a powdery mildew epidemic. Ann Bot 107:885–895PubMedCentralPubMedCrossRefGoogle Scholar
  19. Caborn JM (1955) The influence of shelter-belts on microclimate. Q J R Meteorol Soc 81(347):112–115CrossRefGoogle Scholar
  20. Calonnec A, Burie J-B, Langlais M, Guyader S, Saint-Jean S, Sache I, Tivoli B (2013) Impacts of plant growth and architecture on pathogen processes and their consequences for epidemic behaviour. Eur J Plant Pathol 135:479–497Google Scholar
  21. Chamberlain DE (1999) A comparison of bird populations on organic and conventional farm systems in southern Britain. Biol Conserv 88:307–320CrossRefGoogle Scholar
  22. Clough Y, Holzschuh A, Gabriel D, Purtauf T, Kleijn D, Kruess A, Steffan-Dewenter I, Tscharntke T (2007) Alpha and beta diversity of arthropods and plants in organically and conventionally managed wheat fields. J Appl Ecol 44:804–812Google Scholar
  23. Council of the European Union (2007) Règlement (CE) N°834/2007 du conseil du 28 juin 2007 relatif à la production biologique et à l’étiquetage des produits biologiques et abrogeant le règlement (CEE) n°2092/91. JO du 20/07/2007Google Scholar
  24. Dennis P, Fry GLA (1992) Field margins: can they enhance natural enemy population densities and general arthropod diversity on farmland? Agric Ecosyst Environ 40:95–115CrossRefGoogle Scholar
  25. Duelli P, Obrist MK (2003) Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl Ecol 4:129–138CrossRefGoogle Scholar
  26. Duflot R (2013) Hétérogénéité fonctionnelle et biodiversité: quel est le rôle des interfaces ou lisières dans les paysages agricoles? U.M.R. 6553 Écobio, Rennes 1 University, RennesGoogle Scholar
  27. Environmental Systems Resource Institute (2012) ArcGIS 10.1. ESRI, RedlandsGoogle Scholar
  28. Esposito Vinzi V, Chin WW, Henseler J, Wang H (2010) Handbook of partial least squares. Springer, BerlinCrossRefGoogle Scholar
  29. Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21:1003–1015CrossRefGoogle Scholar
  30. Fahrig L, Baudry J, Brotons L, Burel F, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin J-L (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112Google Scholar
  31. Fuller RJ, Norton LR, Feber RE, Johnson PJ, Chamberlain DE, Joys AC, Mathews F, Stuart RC, Townsend MC, Manley WJ, Wolfe MS, Macdonald DW, Firbank LG (2005) Benefits of organic farming to biodiversity vary among taxa. Biol Lett 1(4):431–434Google Scholar
  32. GAB-FRAB Observatory Network (2010) La Bio en Ille-et-Vilaine—Commune par commune. Fédération Régionale des Agriculteurs Biologiques de Bretagne, Cesson SévignéGoogle Scholar
  33. Gabriel D, Carver SJ, Durham H, Kunin WE, Palmer RC, Sait SM, Stagl S, Benton TG (2009) The spatial aggregation of organic farming in England and its underlying environmental correlates. J Appl Ecol 46:323–333Google Scholar
  34. Gabriel D, Sait SM, Hodgson JA, Schmutz U, Kunin WE, Benton TG (2010) Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol Lett 13:858–869PubMedCrossRefGoogle Scholar
  35. Gomiero T, Pimentel D, Paoletti MG (2011) Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit Rev Plant Sci 30:95–124CrossRefGoogle Scholar
  36. Gosme M, De Villemandy M, Bazot M, Jeuffroy M-H (2012) Local and neighbourhood effects of organic and conventional wheat management on aphids, weeds, and foliar diseases. Agric Ecosyst Environ 161:121–129CrossRefGoogle Scholar
  37. Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555PubMedCrossRefGoogle Scholar
  38. Groom G, Mücher CA, Ihse M, Wrbka T (2006) Remote sensing in landscape ecology: experiences and perspectives in a European context. Landscape Ecol 21:391–408CrossRefGoogle Scholar
  39. Guyot G, Seguin B (1976) Influence du bocage sur le climat d’une petite région. Les Bocages, Histoire, Economie, Ecologie. CNRS, ENSA et Université de Rennes, RennesGoogle Scholar
  40. Hagvar EB, Hofsvang T (1991) Aphid parasitoids (Hymenoptera, Aphidiidae): biology, host selection and use in biological control. Biocontrol News Inf 12:13–42Google Scholar
  41. Henle K, Alard D, Clitherow J, Cobb P, Firbank L, Kull T, McCracken D, Moritz RFA, Niemelä J, Rebane M, Wascher D, Watt A, Young J (2008) Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe—a review. Agric Ecosyst Environ 124:60–71Google Scholar
  42. Hodgson JA, Kunin WE, Thomas CD, Benton TG, Gabriel D (2010) Comparing organic farming and land sparing: optimizing yield and butterfly populations at a landscape scale. Ecol Lett 13:1358–1367PubMedCrossRefGoogle Scholar
  43. Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130CrossRefGoogle Scholar
  44. Holzschuh A, Steffan-Dewenter I, Tscharntke T (2008) Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117:354–361CrossRefGoogle Scholar
  45. Hubert-Moy L, Nabucet J, Vannier C, Lefebvre A (2012) Mapping ecological continuities: which data for which territorial level? Application to the forest and hedge network. Int J Geomat Spat Anal 22(4):619–640Google Scholar
  46. Jakobowicz E (2006) Understanding PLS path modeling parameters estimates: a study based on Monte Carlo simulation and customer satisfaction surveys. Paper presented at the 17th symposium on computational statistics (COMPSTAT’06), Rome, Sept 2006Google Scholar
  47. Johnson VE (2013) Revised standards for statistical evidence. Proc Natl Acad Sci USA 110(48):19313–19317PubMedCentralPubMedCrossRefGoogle Scholar
  48. Jongman RHG, Ter Braak CJF, Van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, New YorkCrossRefGoogle Scholar
  49. Jules ES, Shahani P (2009) A broader ecological context to habitat fragmentation: why matrix habitat is more important than we thought. J Veg Sci 14(3):459–464CrossRefGoogle Scholar
  50. Kleijn D, Kohler F, Baldi A, Batary P, Concepcion ED, Clough Y, Diaz M, Gabriel D, Holzschuh A, Knop E, Kovacs A, Marshall EJP, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc R Soc B 276:903–909Google Scholar
  51. Krauss J, Gallenberger I, Steffan-Dewenter I (2011) Decreased functional diversity and biological pest control in conventional compared to organic crop fields. PLoS One 6(5):e19502PubMedCentralPubMedCrossRefGoogle Scholar
  52. Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74:187–228CrossRefGoogle Scholar
  53. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201PubMedCrossRefGoogle Scholar
  54. Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10PubMedCrossRefGoogle Scholar
  55. Le Féon V, Burel F, Chifflet R, Henry M, Ricroch A, Vaissière BE, Baudry J (2013) Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric Ecosyst Environ 166:94–101Google Scholar
  56. Le Monnier Y, Livory A (2003) Une enquête Manche-Nature: Atlas des Coccinelles de la Manche. Manche-Nature, CoutancesGoogle Scholar
  57. Leroux X, Barbault R, Baudry J, Burel F, Doussan I, Garnier E, Herzog F, Lavorel S, Lifran R, Roger-Estrade R, Sarthou JP, Trommetter M (2008) Agriculture et biodiversité, Valoriser les synergies. Expertise scientifique collective, synthèse du rapport, INRA, France. Quae, VersaillesGoogle Scholar
  58. Liu Y, Jiang S, Liu Y, Wang R, Li X, Yuan Z, Wang L, Xue F (2011) Spatial epidemiology and spatial ecology study of worldwide drug-resistant tuberculosis. Int J Health Geogr 10:50Google Scholar
  59. Lleras C (2005) Path Analysis. In: Kempf-Leonard K (ed) Encyclopedia of social measurement, vol 3. Academic Press, San Diego, pp 25–30CrossRefGoogle Scholar
  60. Lovell ST, Johnston DM (2009) Creating multifunctional landscapes: how can the field of ecology inform the design of the landscape? Front Ecol Environ 7(4):212–220CrossRefGoogle Scholar
  61. MacFadyen S, Gibson R, Polaszek A, Morris RJ, Craze PG, Planqué R, Symondson WOC, Memmott J (2009) Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control? Ecol Lett 12:229–238Google Scholar
  62. Nally RM (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671CrossRefGoogle Scholar
  63. Norton L, Johnson P, Joys A, Stuart R, Chamberlain D, Feber R, Firbank L, Manley W, Wolfe M, Hart B, Mathews F, MacDonald D, Fuller RJ (2009) Consequences of organic and non-organic farming practices for field, farm and landscape complexity. Agric Ecosyst Environ 129:221–227Google Scholar
  64. Obrycki JJ, Kring TJ (1998) Predaceous coccinellidae in biological control. Annu Rev Entomol 43:295–321PubMedCrossRefGoogle Scholar
  65. Pfiffner L, Niggli U (1996) Effects of bio-dynamic, organic and conventional farming on ground beetles (Col. Carabidae) and other epigaeic arthropods in winter wheat. Biol Agric Hortic 12(4):353–364CrossRefGoogle Scholar
  66. Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291PubMedCrossRefGoogle Scholar
  67. Puech C, Baudry J, Joannon A, Poggi S, Aviron S (2014) Organic vs. conventional farming dichotomy: does it make sense for natural enemies? Agric Ecosyst Environ 194:48–57CrossRefGoogle Scholar
  68. Purvis G, Fadl A (2002) The influence of cropping rotations and soil cultivation practice on the population ecology of carabids (Coleoptera: Carabidae) in arable land. Pedobiologia 46:452–474CrossRefGoogle Scholar
  69. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  70. Rabl T, Kühlmann TM (2008) Understanding corruption in organizations—development and empirical assessment of an action model. J Bus Ethics 82:477–495CrossRefGoogle Scholar
  71. Reddersen J (1997) The arthropod fauna of organic versus conventional cereal fields in Denmark. Biol Agric Hortic 15:61–71CrossRefGoogle Scholar
  72. Roger J-L, Jambon O, Bouger G (2013) Clé de détermination des Carabidae, Paysages agricoles du Nord Ouest de la France.
  73. Roschewitz I, Hücker M, Tscharntke T, Thies C (2005) The influence of landscape context and farming practices on parasitism of cereal aphids. Agric Ecosyst Environ 108:218–227CrossRefGoogle Scholar
  74. Rundlöf M, Smith HG (2006) The effect of organic farming on butterfly diversity depends on landscape context. J Appl Ecol 43:1121–1127CrossRefGoogle Scholar
  75. Rundlöf M, Bengtsson J, Smith HG (2008a) Local and landscape effects of organic farming on butterfly species richness and abundance. J Appl Ecol 45:813–820CrossRefGoogle Scholar
  76. Rundlöf M, Nilsson H, Smith HG (2008b) Interacting effects of farming practice and landscape context on bumble bees. Biol Conserv 141:417–426CrossRefGoogle Scholar
  77. Sanchez G (2013a) Basic functions for drawing path diagrams. R package version 0.1.9Google Scholar
  78. Sanchez G (2013b) PLS path modeling with R. Trowchez Editions, Berkeley. Available from Accessed Apr 2014
  79. Sanchez G, Trinchera l, Russolillo G (2013) Tools for partial least squares path modeling (PLS-PM). R package version 0.4.1Google Scholar
  80. Saura S, Martinez-Millan J (2001) Sensitivity of landscape pattern metrics to map spatial extent. Photogramm Eng Remote Sens 67(9):1027–1036Google Scholar
  81. Shao G, Wu J (2008) On the accuracy of landscape pattern analysis using remote sensing data. Landscape Ecol 23:505–511CrossRefGoogle Scholar
  82. Stinner BR, McCartney DA, Van Doren DM Jr (1988) Soil and foliage arthropod communities in conventional, reduced and no-tillage corn (maize, Zea mays L.) systems: a comparison after 20 years of continuous cropping. Soil Tillage Res 11(2):147–158CrossRefGoogle Scholar
  83. Tenenhaus M, Esposito Vinzi V, Chatelin Y-M, Lauro C (2005) PLS path modeling. Comput Stat Data Anal 48:159–205CrossRefGoogle Scholar
  84. Theiling KM, Croft BA (1988) Pesticide side-effects on arthropod natural enemies: a database summary. Agric Ecosyst Environ 21:191–218CrossRefGoogle Scholar
  85. Thenail C, Baudry J (2004) Variation of farm spatial land use pattern according to the structure of the hedgerow network (bocage) landscape: a case study in northeast Brittany. Agric Ecosyst Environ 101:53–72CrossRefGoogle Scholar
  86. Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285:893–895PubMedCrossRefGoogle Scholar
  87. Thies C, Roschewitz I, Tscharntke T (2005) The landscape context of cereal aphid–parasitoid interactions. Proc R Soc B 272:203–210PubMedCentralPubMedCrossRefGoogle Scholar
  88. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  89. Vannier C, Vasseur C, Hubert-Moy L, Baudry J (2011) Multiscale ecological assessment of remote sensing images. Landscape Ecol 26:1053–1069CrossRefGoogle Scholar
  90. Vasseur C, Joannon A, Aviron S, Burel F, Meynard J-M, Baudry J (2013) The cropping systems mosaic: how does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric Ecosyst Environ 166:3–14CrossRefGoogle Scholar
  91. Vorley VT, Wratten SD (1987) Migration of parasitoids (Hymenoptera: Braconidae) of cereal aphids (Hemiptera: Aphididae) between grassland, early-sown cereals and late-sown cereals in southern England. Bull Entomol Res 77(4):555–568CrossRefGoogle Scholar
  92. Westphal C, Steffan-Dewenter I, Tscharntke T (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett 6:961–965CrossRefGoogle Scholar
  93. With KA, Pavuk DM, Worchuck JL, Oates RK, Fisher JL (2002) Threshold effects of landscape structure on biological control in agroecosystems. Ecol Appl 12(1):52–65CrossRefGoogle Scholar
  94. Wu J (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecol 19:125–138CrossRefGoogle Scholar
  95. Zehnder G, Gurr GM, Kühne S, Wade MR, Wratten SD, Wyss E (2007) Arthropod pest management in organic crops. Annu Rev Entomol 52:57–80PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Camille Puech
    • 1
    • 2
  • Sylvain Poggi
    • 3
  • Jacques Baudry
    • 1
  • Stéphanie Aviron
    • 1
  1. 1.French National Institute of Agronomic Research (INRA), UR 980, SAD-PaysageRennes CedexFrance
  2. 2.Rennes CedexFrance
  3. 3.UMR1349 IGEPP, French National Institute of Agronomic Research (INRA)Le RheuFrance

Personalised recommendations