Advertisement

Landscape Ecology

, Volume 29, Issue 9, pp 1481–1485 | Cite as

Errors in greenhouse forcing and soil carbon sequestration estimates in freshwater wetlands: a comment on Mitsch et al. (2013)

  • Scott D. Bridgham
  • Tim R. Moore
  • Curtis J. Richardson
  • Nigel T. Roulet
Perspective

Abstract

Radiative forcing feedbacks from wetlands have been an important component of past climate change and will likely be so in the future, so accurately assessing the carbon (C) and radiative balances of wetlands remains an important research priority. This commentary shows that the paper by Mitsch et al. (Landscape Ecol 28:583–597, 2013) seriously underestimated the radiative forcing effect of methane (CH4) emissions and overestimated soil C sequestration in freshwater wetlands. The model that they used is flawed in double counting the atmospheric decay of CH4 and incorporating a single 100 year CH4 global warming potential. They also used a small number of sites and short-term soil dating that resulted in unrealistically high soil C sequestration rates, ignoring decay of the entire soil C pool and allochthonous inputs of C. They calculated the radiative balance instead of the radiative forcing of natural wetlands, making their calculations irrelevant to anthropogenic climate change. Irrespective of the radiative forcing of wetlands, they provide essential ecosystem services that are important to protect.

Keywords

Wetlands Global warming potential Radiative forcing Methane Soil carbon sequestration 

Notes

Acknowledgments

The comments of J. Patrick Megonigal, the associate editor, and two anonymous reviewers greatly improved this manuscript.

References

  1. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163CrossRefGoogle Scholar
  2. Blunier T, Chappellaz J, Schwander J, Stauffer B, Raynaud D (1995) Variations in atmospheric methane concentration during the Holocene epoch. Nature 374:46–49CrossRefGoogle Scholar
  3. Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916CrossRefGoogle Scholar
  4. Chappellaz J, Bluniert T, Raynaud D, Barnola JM, Schwander J, Stauffert B (1993a) Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366:443–445CrossRefGoogle Scholar
  5. Chappellaz JA, Fung IY, Thompson AM (1993b) The atmospheric CH4 increase since the Last Glacial Maximum. Tellus B 45:228–241CrossRefGoogle Scholar
  6. Craft CB, Casey WP (2000) Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands 20:323–332CrossRefGoogle Scholar
  7. Craft CB, Richardson CJ (1998) Recent and long-term organic soil accretion and nutrient accumulation in the Everglades. Soil Sci Soc Am J 62:834–843CrossRefGoogle Scholar
  8. Forster P, Ramaswamy P, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 129–234Google Scholar
  9. Frolking S, Roulet N, Fuglestvedt J (2006) How northern peatlands influence the earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J Geophys Res 111:G01008. doi: 10.1029/2005JG000091 Google Scholar
  10. Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola JM, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386PubMedCrossRefGoogle Scholar
  11. Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H (2013) Wetlands, carbon, and climate change. Landscape Ecol 28:583–597. doi: 10.1007/s10980-012-9758-8 CrossRefGoogle Scholar
  12. Mitsch WJ, Gosselink JG (2000) Wetlands. Wiley, New YorkGoogle Scholar
  13. Neubauer SC (2014) On the challenges of modeling the net radiative forcing of wetlands: reconsidering Mitsch et al. (2013). Landscape Ecol 29:571–577. doi: 10.1007/s10980-014-9986-1 CrossRefGoogle Scholar
  14. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marbà N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7:e43542. doi: 10.1371/journal.pone.0043542 PubMedCrossRefPubMedCentralGoogle Scholar
  15. Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, Myhre G, Nakajima T, Shi GY, Solomon S (2001) Radiative forcing of climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 349–416Google Scholar
  16. Smith SV, Renwick WH, Buddemeier RW, Crossland CJ (2001) Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochem Cycles 15:697–707CrossRefGoogle Scholar
  17. Turunen J, Roulet NT, Moore TR (2004) Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Glob Biogeochem Cycles 18:GB3002, doi: 10.1029/2003GB002154
  18. Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, da Silva JRM, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629. doi: 10.1126/science.1145724 PubMedCrossRefGoogle Scholar
  19. Yu ZC (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085. doi: 10.5194/bg-9-4071-2012 CrossRefGoogle Scholar
  20. Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010) Global peatland dynamics since the Last Glacial Maximum. Geophys Res Lett 37:L13402. doi: 10.1029/2010gl043584 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Scott D. Bridgham
    • 1
  • Tim R. Moore
    • 2
  • Curtis J. Richardson
    • 3
  • Nigel T. Roulet
    • 2
  1. 1.Environmental Sciences Institute and Institute for Ecology and EvolutionUniversity of OregonEugeneUSA
  2. 2.Department of GeographyMcGill UniversityMontrealCanada
  3. 3.Duke University Wetland Center, Nicholas School of the EnvironmentDuke UniversityDurhamUSA

Personalised recommendations