Landscape Ecology

, Volume 29, Issue 1, pp 67–79 | Cite as

Riverscape heterogeneity explains spatial variation in zooplankton functional evenness and biomass in a large river ecosystem

  • Philippe MassicotteEmail author
  • Jean-Jacques Frenette
  • Raphaël Proulx
  • Bernadette Pinel-Alloul
  • Andrea Bertolo
Research article


Ecologists have long focused on local-scale phenomena (i.e. local environment variables) and assumed that spatial processes were unimportant factors influencing both the community structure and the functional diversity of aquatic communities. In this paper we used zooplankton assemblages in a typical large river (St. Lawrence River) as a biological model to examine the roles of (1) local environmental conditions (physicochemical characteristics of the water column), (2) broad-scale connectivity (a proxy for dispersion potential), and (3) habitat heterogeneity (a proxy for niche diversity) on the structure and the diversity of lotic communities. Together, these three sets of descriptors explained respectively 52, 49 and 59 % of the variation in zooplankton total biomass, functional diversity and community structure. After partialling out the roles of local environmental conditions and broad-scale connectivity, we demonstrated that habitat heterogeneity alone is a key driver of zooplankton total biomass and functional evenness at the riverscape level. In homogeneous and temporally stable habitats, zooplankton communities had higher biomass and functional evenness but lower species richness. Conversely, zooplankton had lower biomass and higher species richness in heterogeneous and unstable habitats, suggesting that zooplankton species can coexist because disturbances prevent competitive exclusion from occurring. This is the first study to reveal how local environmental conditions, spatial connectivity and habitat heterogeneity operate jointly to determine the functional diversity and structure of aquatic communities in a natural ecosystem.


Community structure Functional diversity Riverscape Spatial connectivity Habitat heterogeneity Variation partitioning St-Lawrence river Zooplankton 



We gratefully acknowledge the captain, François Harvey, and crew of the RV Lampsilis for their invaluable support during the expedition on the St. Lawrence River. We are thankful to Simon de Sousa, Virginie Roy, and Ginette Méthot for their assistance during field sampling and to Édith Cusson and Lama Aldamman for taxonomic analyzes of zooplankton. We thank A.-L. Larouche, C. Martin, D. M’Radamy, P. Thibeault and A. Veillette for help in the field and in the lab. M. Gosselin and C. Nozais kindly shared the bacterial data. Katherine Roach gave helpful comments on an earlier version of the manuscript. This research was funded by the Natural Sciences Research Council of Canada (NSERC ship time and discovery programs) and the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) to J.-J.F. P. Massicotte was supported by a Centre de Recherche sur les Interactions Bassins Versants- Écosystèmes aquatiques (RIVE) postdoctoral fellowship from university of Québec at Trois-Rivières. The Matlab (version 2011b) code implemented to calculate heterogeneity metrics is available upon request to the authors.

Supplementary material

10980_2013_9946_MOESM1_ESM.pdf (121 kb)
Supplementary material 1 (PDF 120 kb)


  1. Akasaka M, Takamura N (2012) Hydrologic connection between ponds positively affects macrophyte alpha and gamma diversity but negatively affects beta diversity. Ecology 93(5):967–973PubMedCrossRefGoogle Scholar
  2. Barnett A, Beisner BE (2007) Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology 88(7):1675–1686PubMedCrossRefGoogle Scholar
  3. Basu BK, Kalff J, Pinel-Alloul B (2000) The influence of macrophyte beds on plankton communities and their export from fluvial lakes in the St Lawrence River. Freshwater Biology 45(4):373–382CrossRefGoogle Scholar
  4. Beisner BE, Peres PR, Lindstrom ES, Barnett A, Longhi ML, Peres-Neto PR (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87(12):2985–2991PubMedCrossRefGoogle Scholar
  5. Belzile C, Brugel S, Nozais C, Gratton Y, Demers S (2008) Variations of the abundance and nucleic acid content of heterotrophic bacteria in Beaufort Shelf waters during winter and spring. J Mar Syst 74(3–4):946–956CrossRefGoogle Scholar
  6. Benda L, Andras K, Miller D, Bigelow P (2004) Confluence effects in rivers: interactions of basin scale, network geometry, and disturbance regimes. Water Resour Res 40:W05402 Google Scholar
  7. Blanchet FG, Legendre P, Borcard D (2008a) Forward selection of explanatory variables. Ecology 89(9):2623–2632PubMedCrossRefGoogle Scholar
  8. Blanchet FG, Legendre P, Borcard D (2008b) Modelling directional spatial processes in ecological data. Ecol Model 215(4):325–336CrossRefGoogle Scholar
  9. Boots BN, Getis A (1988) Point pattern analysis. SAGE publications, Newbury ParkGoogle Scholar
  10. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  11. Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbrichtilkowska A, Kurasawa H, Larsson P, Weglenska T (1976) Review of some problems in zooplankton production studies. Nor J Zool 24:419–456Google Scholar
  12. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893–903CrossRefGoogle Scholar
  13. Chase JM, Leibold MA (2003) Ecological niches : linking classical and contemporary approaches. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  14. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31(2000):343–366CrossRefGoogle Scholar
  15. Clark CM, Flynn DFB, Butterfield BJ, Reich PB (2012) Testing the link between functional diversity and ecosystem functioning in a Minnesota grassland experiment. PLoS One 7(12):e52821PubMedCentralPubMedCrossRefGoogle Scholar
  16. Connell JH (1978) Diversity in tropical rain forests and coral reefs—high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199(4335):1302–1310PubMedCrossRefGoogle Scholar
  17. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196(3–4):483–493CrossRefGoogle Scholar
  18. Drenner RW, McComas SR (1980) The roles of zooplankter escape ability and fish size selectivity in the selective feeding and impact of planktivorous fish. In: Kerfoot WC (ed) Evolution and ecology of zooplankton communities. University Press of New England, Hanover, pp 587–593Google Scholar
  19. Elliott DT, Pierson JJ, Roman MR (2012) Relationship between environmental conditions and zooplankton community structure during summer hypoxia in the northern Gulf of Mexico. J Plankton Res 34(7):602–613CrossRefGoogle Scholar
  20. Forbes AE, Chase JMN (2002) The role of habitat connectivity and landscape geometry in experimental zooplankton metacommunities. Oikos 96(3):433–440CrossRefGoogle Scholar
  21. Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, CambridgeGoogle Scholar
  22. Frenette JJ, Arts MT, Morin J, Gratton D, Martin C (2006) Hydrodynamic control of the underwater light climate in fluvial Lac Saint-Pierre. Limnol Oceanogr 51(6):2632–2645CrossRefGoogle Scholar
  23. Frenette JJ, Massicotte P, Lapierre JF (2012) Colorful niches of phytoplankton shaped by the spatial connectivity in a large river ecosystem: a riverscape perspective. PLoS One 7:e35891PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kneitel JM, Chase JM (2004) Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol Lett 7(1):69–80CrossRefGoogle Scholar
  25. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1):299–305PubMedCrossRefGoogle Scholar
  26. Laliberté E, Shipley B (2010) FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology.Google Scholar
  27. Legendre P, Legendre L (2012) Numerical ecology, vol 20. Elsevier, OxfordGoogle Scholar
  28. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  29. Massicotte P, Frenette JJ (2011) Spatial connectivity in a large river system: resolving the sources and fate of dissolved organic matter. Ecol Appl 21:2600–2617PubMedCrossRefGoogle Scholar
  30. Mellin C, Parrott L, Andréfouët S, Bradshaw CJ, MacNeil MA, Caley MJ (2012) Multi-scale marine biodiversity patterns inferred efficiently from habitat image processing. Ecol Appl 22(3):792–803PubMedCrossRefGoogle Scholar
  31. Menge B, Olson A (1990) Role of scale and environmental factors in regulation of community structure. Trends Ecol Evol 5(2):52–57PubMedCrossRefGoogle Scholar
  32. Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96(5):884–893CrossRefGoogle Scholar
  33. Nichols WF, Killingbeck KT, August PV (1998) The influence of geomorphological heterogeneity on biodiversity II. A landscape perspective. Conserv Biol 12(2):371–379CrossRefGoogle Scholar
  34. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology packageGoogle Scholar
  35. Pedruski MT, Arnott SE (2011) The effects of habitat connectivity and regional heterogeneity on artificial pond metacommunities. Oecologia 166(1):221–8PubMedCrossRefGoogle Scholar
  36. Petrou M, García Sevilla P (2006) Image processing: dealing with texture. John Wiley & Sons Inc., ChichesterCrossRefGoogle Scholar
  37. Pinel-Alloul B, Cusson E, Aldamman L (2011) Diversity and spatial distribution of copepods in the St. Lawrence River (Québec, Canada). In: von Vaupel Klein JC (ed) Crustaceana monographs, vol 16. Brill, Leiden, pp 425–429Google Scholar
  38. Pommier J, Frenette J-J, Massicotte P, Lapierre J-F, Glémet H (2012) Seston fatty acid composition and copepod RNA: DNA ratio with respect to the underwater light climate in fluvial Lac Saint-Pierre. Aquat Sci 74(3):539–553CrossRefGoogle Scholar
  39. Proulx R, Fahrig L (2010) Detecting human-driven deviations from trajectories in landscape composition and configuration. Landscape Ecol 25:1479–1487CrossRefGoogle Scholar
  40. Proulx R, Parrott L (2008) Measures of structural complexity in digital images for monitoring the ecological signature of an old-growth forest ecosystem. Ecol Indic 8:270–284CrossRefGoogle Scholar
  41. Reid JW, Williamson CE (2010) Copepoda. In: Thorp JH, Covich AP (eds) Ecology and classification of North American freshwater invertebrates. Elsevier Inc., Amsterdam, pp 829–899CrossRefGoogle Scholar
  42. Schiemer F, Keckeis H, Reckendorfer W, Winkler G (2001) The “inshore retention concept” and its significance for large rivers. Arch fur Hydrobiol Suppl 135(2–4):509–516Google Scholar
  43. Sluss TD, Cobbs GA, Thorp JH (2008) Impact of turbulence on riverine zooplankton: a mesocosm experiment. Freshw Biol 53(10):1999–2010CrossRefGoogle Scholar
  44. Thorp JH, Thoms MC, Delong MD (2006) The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res Appl 22(2):123–147CrossRefGoogle Scholar
  45. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137CrossRefGoogle Scholar
  46. Villéger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301 PubMedCrossRefGoogle Scholar
  47. Vis C, Hudon C, Carignan R, Gagnon P (2007) Spatial analysis of production by macrophytes, phytoplankton and epiphyton in a large river system under different water-level conditions. Ecosystems 10(2):293–310CrossRefGoogle Scholar
  48. Vrede T, Vrede K (2005) Contrasting ’top-down’ effects of crustacean zooplankton grazing on bacteria and phytoflagellates. Aquat Ecol 39(3):283–293CrossRefGoogle Scholar
  49. Walseng B, Hessen DO, Halvorsen G, Schartau AK (2006) Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnol Oceanogr 51(6):2600–2606CrossRefGoogle Scholar
  50. Warfe DM, Pettit NE, Magierowski RH, Pusey BJ, Davies PM, Douglas MM, Bunn SE (2012) Hydrological connectivity structures concordant plant and animal assemblages according to niche rather than dispersal processes. Freshw Biol 58:292–305CrossRefGoogle Scholar
  51. Wiens JA (2002) Riverine landscapes: taking landscape ecology into the water. Freshw Biol 47:501–515CrossRefGoogle Scholar
  52. Williamson CE, Zagarese HE, Schulze PC, Hargreaves BR, Seva J (1994) The impact of short-term exposure to UV-B radiation on zooplankton communities in north temperate lakes. J Plankton Res 16(3):205–218CrossRefGoogle Scholar
  53. Yoshida T, Gurung T, Kagami M, Urabe J (2001) Contrasting effects of a cladoceran (Daphnia galeata) and a calanoid copepod (Eodiaptomus japonicus) on algal and microbial plankton in a Japanese lake, Lake Biwa. Oecologia 129:602–610Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Philippe Massicotte
    • 1
    Email author
  • Jean-Jacques Frenette
    • 1
  • Raphaël Proulx
    • 1
  • Bernadette Pinel-Alloul
    • 2
  • Andrea Bertolo
    • 1
  1. 1.Department of Environmental ScienceUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  2. 2.Université de MontréalMontréalCanada

Personalised recommendations