Landscape Ecology

, Volume 28, Issue 4, pp 599–614 | Cite as

Vegetation-mediated feedback in water, carbon, nitrogen and phosphorus cycles

  • Martin J. WassenEmail author
  • Hugo J. de Boer
  • Katrin Fleischer
  • Karin T. Rebel
  • Stefan C. Dekker
Research Article


Since the industrial revolution, industry, traffic and the manufacture and application of nitrogenous fertilizers have increased carbon dioxide emissions and accelerated the nitrogen (N) cycle. The combined effects of a warming climate, CO2 fertilization, land-use change and increased N availability may be responsible for primary productivity increases in many parts of the world. Enhanced productivity may lead to shifts in albedo and transpiration, which feed back to the water cycle through heat fluxes and precipitation. Plants may also respond to elevated CO2 by closing their stomata or by structurally adapting their stomatal density and size, which potentially diminishes transpiration. Intensification of agriculture has also led to an increase in both nitrogenous (N) and phosphorus (P) fertilization. The combined effect of atmospheric N deposition and P fertilization has distorted the balance between N and P availability in many ecosystems. The active role of plants in accessing nutrients from the soil may trigger switches in nutrient availability, triggering shifts in plant productivity and species composition in these ecosystems and therefore also in the carbon (C) cycle. In response to global change, the above plant responses may influence each other positively or negatively and may impact on the elemental cycles of C, N and P and the water cycle. We are only beginning to understand how these four cycles interact, the role of plant processes and vegetation in these interactions, and the net outcome for plant competition, vegetation distribution, landscape development and directions of global change. In this paper we have integrated a number of recent research findings into known relationships that together elucidate interactions between these cycles through vegetation, and could potentially have unexpected effects on landscapes and larger-scale systems (continental, global). These interactions include processes operating at very distinct temporal and spatial scales, in which terrestrial ecosystems and their spatial organization in the landscape are key. We argue that to better understand the effects of changes in land cover and land use on biogeochemical and biogeophysical fluxes, it is necessary to account for feedbacks via vegetation and how these interfere with elemental cycles. Finally, we suggest directions for further research to fill the current knowledge gaps.


Carbon Nitrogen Phosphorus Nutrients Stomata Global climate change Plants Water Ecosystem Feedbacks Scales 



We thank Emmy Lammertsma and Rike Wagner-Cremer for kindly sharing data and photographs of Fig. 2. We thank Margot Stoete for redrawing the figures. J. Burrough was the language editor of the near-final draft.


  1. Aber J, McDowell W, Nadelhoffer K, Magil A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience 48(11):921–934CrossRefGoogle Scholar
  2. Agren GI, Wetterstedt JAM, Billberger MFK (2012) Nutrient limitation on terrestrial plant growth—modeling the interaction between nitrogen and phosphorus. New Phytol 194:953–960PubMedCrossRefGoogle Scholar
  3. Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, O’Donnell D, Schurgers G, Sorvari S, Vesala T (2010) Terrestrial biogeochemical feedbacks in the climate system RID E-4643-2011. Nat Geosci 3:525–532CrossRefGoogle Scholar
  4. Arp WJ, van Mierlo JEM, Berendse F, Snijders W (1998) Interactions between elevated CO2 concentration, nitrogen and water: effects on growth and water use of six perennial plant species. Plant, Cell Environ 21(1):1–11CrossRefGoogle Scholar
  5. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KTU, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. B Am Meteorol Soc 82:2415–2434CrossRefGoogle Scholar
  6. Barry RG, Chorley RG (2003) Atmosphere, weather and climate. Pub. R, New YorkGoogle Scholar
  7. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman J, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59PubMedCrossRefGoogle Scholar
  8. Bolin B, Sukumar R (2000) Global perspective. In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (EDS) Land use, land-use change, and forestry. Special Report of the IPCC. Cambridge University Press, Cambridge, pp 23–51Google Scholar
  9. Brovkin V, Claussen M, Petoukhov V, Ganopolski A (1998) On the stability of the atmosphere-vegetation system in the Sahara/Sahel region. J Geophys Res Atmos 103:31613–31624CrossRefGoogle Scholar
  10. Butterbach-Bahl K, Gundersen P, Sutton M (eds) (2011) Nitrogen processes in terrestrial ecosystems. In: The European Nitrogen Assessment. Cambridge University Press, pp 99–125Google Scholar
  11. Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci 104(47):18866–18870PubMedCrossRefGoogle Scholar
  12. Chapin FS (1980) Mineral nutrition of higher plants. Annu Rev Ecol Syst 11:233–260CrossRefGoogle Scholar
  13. Churkina G, Brovkin V, von Bloh W, Trusilova K, Jung M, Dentener F (2009) Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming. Glob Biogeochem Cycles 23:GB4027. doi: 10.1029/2008GB003291
  14. Churkina G, Zaehle S, Hughes J, Viovy N, Chen Y, Jung M, Heumann BW, Ramankutty N, Rцdenbeck C, Heimann M, Jones C (2010) Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe. Biogeosci Discuss 7(2):2227–2265CrossRefGoogle Scholar
  15. Claussen M (1998) On multiple solutions of the atmosphere-vegetation system in present-day climate. Glob Change Biol 4(549–559):1998Google Scholar
  16. de Boer HJ, Lammertsma EI, Wagner-Cremer F, Dilcher DL, Wassen MJ, Dekker SC (2011) Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2. Proc Natl Acad Sci USA 108(10):4041–4046PubMedCrossRefGoogle Scholar
  17. de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van Oijen M, Evans C, Gundersen P, Kros J, Wamelink G, Reinds G, Sutton M (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For Ecol Manage 258(8):1814–1823CrossRefGoogle Scholar
  18. Dekker SC, Rietkerk M, Bierkens MFP (2007) Coupling microscale vegetation-soil water and macroscale vegetation-precipitation feedbacks in semiarid ecosystems. Glob Change Biol 13:671–678CrossRefGoogle Scholar
  19. Dekker SC, de Boer HJ, Brovkin V, Fraedrich K, Wassen MJ, Rietkerk MG (2010) Biogeophysical feedbacks trigger shifts in the modelled vegetation-atmosphere system at multiple scales. Biogeosciences 7(4):1237–1245CrossRefGoogle Scholar
  20. Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob Biogeochem Cycles 20:GB4003Google Scholar
  21. Elkin C, Reineking B, Bigler C, Brugmann H (2012) Do small-grain processes matter for landscape scale questions? Sensitivity of a forest landscape model to the formulation of tree growth rate. Landscape Ecol 27:697–711CrossRefGoogle Scholar
  22. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142PubMedCrossRefGoogle Scholar
  23. Erisman JW, de Vries W (2000) Nitrogen deposition and effects on European forests. Environ Rev 8(2):65–93CrossRefGoogle Scholar
  24. Erisman JW, Galloway J, Seitzinger S, Bleeker A, Butterbach-Bahl K (2011) Reactive nitrogen in the environment and its effect on climate change. Curr Opin Environ Sustain 3(5):281–290CrossRefGoogle Scholar
  25. Falkowski P, Scholes R, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie F, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296PubMedCrossRefGoogle Scholar
  26. Felzer BSTW, Cronin JM, Melillo DW, Kicklighter C, Schlosser A, Dangal SRS (2011) Nitrogen effect on carbon-water coupling in forests, grasslands, and shrublands in the arid western United States. J Geophys Res 116:G03023. doi: 10.1029/2010JG001621 CrossRefGoogle Scholar
  27. Fleischer K, Rebel KT, van der Molen MK, Erisman JW, van Loon EE, Wassen MJ, Montagnani L, Dolman AJ. Contribution of nitrogen deposition to carbon sequestration via increases in photosynthetic capacity of forest canopies. Glob Biogeochem Cycles (accepted)Google Scholar
  28. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574PubMedCrossRefGoogle Scholar
  29. Fraedrich K, Jansen H, Kirk E, Luksch U, Lunkeit F (2005) The planet simulator: towards a user friendly model. Meteorol Z 14:299–304CrossRefGoogle Scholar
  30. Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci USA 106:10343–10347PubMedCrossRefGoogle Scholar
  31. Fujita Y, Robroek BJM, de Ruiter PC, Heil GW, Wassen MJ (2010) Increased N affects P uptake of eight grassland species: the role of root surface phosphatase activity. Oikos 119:1665–1673CrossRefGoogle Scholar
  32. Galloway JN, Aber J, Erisman J, Seitzinger S, Howarth R, Cowling E, Cosby B (2003) The nitrogen cascade. Bioscience 53(4):341–356CrossRefGoogle Scholar
  33. Galloway J, Dentener F, Capone D, Boyer E, Howarth R, Seitzinger S, Asner G, Cleveland C, Green P, Holland E, Karl D, Michaels A, Porter J, Townsend A, Vorosmarty C (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  34. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892PubMedCrossRefGoogle Scholar
  35. Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Continental runoff—a quality-controlled global runoff data set—reply. Nature 444:E14–E15CrossRefGoogle Scholar
  36. Gerber S, Hedin LO, Oppenheimer M, Pacala SW, Shevliakova E (2010) Nitrogen cycling and feedbacks in a global dynamic land model. Glob Biogeochem Cycles 24:GB1001. doi: 10.29/2008GB003336
  37. Grime JP (1979) Plant strategies and vegetation processes. Wiley, ChichesterGoogle Scholar
  38. Gu Y, Howard DM, Wylie BK, Zhang L (2012) Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains. Landscape Ecol 27:319–326CrossRefGoogle Scholar
  39. Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266CrossRefGoogle Scholar
  40. Hejcman M, Schelberg J, Pavlu V (2010) Dactylorhiza maculata, Platanthera bifolia and Listera ovata survive N application under P limitation. Acta Oecologia 36:68–684CrossRefGoogle Scholar
  41. Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908PubMedCrossRefGoogle Scholar
  42. Högberg P (2012) What is the quantitative relation between nitrogen deposition and forest carbon sequestration? Glob Change Biol 18(1):1–2CrossRefGoogle Scholar
  43. Huang JG, Bergeron Y, Denneler B, Berninger F, Tardiff J (2007) Response of forest trees to increased atmospheric CO2. Crit Rev Plant Sci 26:265–283CrossRefGoogle Scholar
  44. Huang Z, Clinton PW, Baisden WT, Davis WR (2011) Long-term nitrogen additions increased surface soil carbon concentration in a forest plantation despite elevated decomposition. Soil Biol Biochem 43:302–307CrossRefGoogle Scholar
  45. Hyvönen R, Persson T, Andersson S, Olsson B, Agren GI, Linder S (2008) Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89:121–137CrossRefGoogle Scholar
  46. IFDC (2010) World phosphate rock reserves and resources. IFCDGoogle Scholar
  47. IPCC (2007) Summary for policymakers in: climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  48. Jain A, Yang X, Kheshgi H, McGuire AD, Post W, Kicklighter D (2009) Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Glob Biogeochem Cycles 23:GB4028. doi: 10.1029/2009GB003519
  49. Janssens IA, Luyssaert S (2009) Carbon cycle: nitrogen’s carbon bonus. Nat Geosci 2(5):318–319CrossRefGoogle Scholar
  50. Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs G-J, Folberth G, Schlamadinger B, Hutjes RW, Ceulemans R, Schulze E-D, Valentini R, Dolman AJ (2003) Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300(5625):1538–1542PubMedCrossRefGoogle Scholar
  51. Johnson D, Leake JR, Lee JA (1999) The effects of quantity and duration of simulated pollutant nitrogen deposition on root-surface phosphatase activities in calcareous and acid grasslands: a bioassay approach. New Phytol 141:433–442CrossRefGoogle Scholar
  52. Kleidon A (2006) The climate sensitivity to human appropriation of vegetation productivity and its thermodynamic characterization. Global Planet Change 54:109–127CrossRefGoogle Scholar
  53. Konings AG, Dekker SC, Rietkerk M, Katul GG (2011) Drought sensitivity of patterned vegetation determined by rainfall-land surface feedbacks. J Geophys Res Biogeosci 116:G04008CrossRefGoogle Scholar
  54. Konrad W, Roth-Nebelsick A, Grein M (2008) Modelling of stomatal density response to atmospheric CO2. J Theor Biol 253:638–658PubMedCrossRefGoogle Scholar
  55. Lammertsma EI, de Boer HJ, Dekker SC, Dilcher DL, Lotter AF, Wagner-Cremer F (2011) Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proc Natl Acad Sci USA 108:4035–4040PubMedCrossRefGoogle Scholar
  56. Lannes LS (2012) Effects of soil nutrients upon native and alien invasive plants in the Brazilian Cerrado. PhD Thesis, ETH ZurichGoogle Scholar
  57. Lavoie M, Mack MC, Schuur EAG (2011) Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. J Geophys Res 116:G03013. doi: 10.1029/2010JG001629 CrossRefGoogle Scholar
  58. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371–379PubMedCrossRefGoogle Scholar
  59. Liu L, Greaver TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett 12(10):1103–1117PubMedCrossRefGoogle Scholar
  60. Lovett GM, Goodale CL (2011) A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. Ecosystems 14:615–631CrossRefGoogle Scholar
  61. Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54(8):731–739CrossRefGoogle Scholar
  62. Macdonald CA, Anderson IC, Bardgett RD, Singh BK (2011) Role of nitrogen in carbon mitigation in forest ecosystems. Curr Opin Environ Sustain 3:303–310CrossRefGoogle Scholar
  63. Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443PubMedCrossRefGoogle Scholar
  64. Marklein AR, Houlton BZ (2011) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193:696–704PubMedCrossRefGoogle Scholar
  65. McMurtrie RE, Norby RJ, Medlyn BE, Dewar RC, Pepper DA, Reich PB, Barton CVM (2008) Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Funct Plant Biol 35:521–534CrossRefGoogle Scholar
  66. Melillo JM, Butler S, Johnson J, Mohan J, Streudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou YM, Tang J (2011) Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci USA 108(23):9508–9512PubMedCrossRefGoogle Scholar
  67. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: general synthesis. Island Press and World Resources Institute, Washington, DCGoogle Scholar
  68. Olander LP, Vitousek PM (2000) Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49:175–190CrossRefGoogle Scholar
  69. Olde Venterink H, Güsewell S (2010) Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation. Funct Ecol 24:877–886CrossRefGoogle Scholar
  70. Ollinger SV, Richardson AD, Martin ME, Hollinger DY, Frolking SE, Reich PB, Plourde LC, Katul GG, Munger JW, Oren R, Smith ML, Paw KT, Bolstad UPV, Cook BD, Day MC, Martin TA, Monson RK, Schmid HP (2008) Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. Proc Natl Acad Sci USA 105(49):19336–19341PubMedCrossRefGoogle Scholar
  71. Oyama MD, Nobre CA (2003) A new climate-vegetation equilibrium state for tropical South America. Geophys Res Lett 30(4):2199. doi: 10.1029/2003gl018600 CrossRefGoogle Scholar
  72. Phillips RP, Finzi AVC, Bernardt ES (2011) Enhanced root exudation induces microbial feedbacks to C cycling in a pine forest under long term CO2 fumigation. Ecol Lett 14(2):187–194. doi: 10.1111/j.1461-0248.2010.01570.x PubMedCrossRefGoogle Scholar
  73. Phoenix G, Booth R, Leake JR, Read D, Grime JP, Lee JA (2003) Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland. New Phytol 161:279–289CrossRefGoogle Scholar
  74. Phoenix GK, Emmett BA, Britton AJ, Caporn SJM, Dise NB, Helliwell R, Jones L, Leake JR, Leith ID, Sheppard LJ, Sowerby A, Pilkington MG, Rowe EC, Ashmorek MR, Power SA (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Global Change Biol 18:1197–1215CrossRefGoogle Scholar
  75. Pimm SL, Lawton JH, Cohen JE (1991) Food web patterns and their consequences. Nature 350:669–674CrossRefGoogle Scholar
  76. Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1(7):430–437CrossRefGoogle Scholar
  77. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221Google Scholar
  78. Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009a) A safe operating space for humanity. Nature 461:472–475PubMedCrossRefGoogle Scholar
  79. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber H, Nykvist B, De Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell LW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009b) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14(2):32Google Scholar
  80. Schulze E-D (2006) Biological control of the terrestrial carbon sink. Biogeosciences 3(2):147–166CrossRefGoogle Scholar
  81. Sokolov AP, Kicklighter DW, Melillo JM, Felzer BS, Schlosser CA, Cronin TW (2008) Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J Clim 21:3776–3796CrossRefGoogle Scholar
  82. Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879PubMedCrossRefGoogle Scholar
  83. Stoy PC, Williams M, Disney M, Prieto-Blnco A, Huntley B, Baxter R, Lewis P (2009a) Upscaling as ecological information transfer: a simple framework with application to Arctic ecosystem carbon exchange. Landscape Ecol 24:971–986CrossRefGoogle Scholar
  84. Stoy PC, Williams M, Spadavecchia L, Bell RA, Prieto-Blanco A, Evans JG, Wijk MT (2009b) Using information theory to determine optimum pixel size and shape for ecological studies: application to leaf area index aggregation in arctic ecosystems. Ecosystems 12:574–589CrossRefGoogle Scholar
  85. Tilman D (1982) Resource competition and community structure. Princeton University Press, PrincetonGoogle Scholar
  86. Uriarte M, Yackulic CB, Lim Y, Acre-Nazario JA (2011) Influence of land use on water quality in a tropical landscape: a multi-scale analysis. Landscape Ecol 26:1151–1164CrossRefGoogle Scholar
  87. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  88. Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical ecosystems. Ecology 65:285–298CrossRefGoogle Scholar
  89. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115CrossRefGoogle Scholar
  90. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  91. Vitousek PM, Cassman K, Cleveland C, Crews T, Field C, Grimm N, Howarth R, Marino R, Martinelli L, Rastetter E, Sprent J (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45CrossRefGoogle Scholar
  92. Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications and nitrogen-phosphorus interactions. Ecol Appl 20:5–15PubMedCrossRefGoogle Scholar
  93. Von Liebig J (1843) Chemistry in its applications to agriculture and physiology (3th edition). Taylor and Walton, LondonGoogle Scholar
  94. Wada Y, van Beek LPH, Bierkens MFP (2012) Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour Res 48:W00L06. doi: 10.1029/2011WR010562
  95. Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7(7):2261–2282CrossRefGoogle Scholar
  96. Wassen MJ, Olde Venterink H, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550PubMedCrossRefGoogle Scholar
  97. Wesche K, Treiber J (2012) Abiotic and biotic determinants of steppe productivity and performance—a view from Central Asia. In: Werger MJA, van Staalduinen MA (eds) Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World. Springer, Berlin, pp 3–44CrossRefGoogle Scholar
  98. Woodward F (1987) Climate and plant distribution. In: Press CU (ed) New YorkGoogle Scholar
  99. Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2—implications for water-limited environments. Plant, Cell Environ 25:319–331CrossRefGoogle Scholar
  100. Zaehle S, Dalmonech D (2011) Carbon-nitrogen interactions on land at global scales: current understanding in modeling climate biosphere feedbacks. Curr Opin Environ Sustain 3:311–320CrossRefGoogle Scholar
  101. Zaehle S, Friend AD (2010) Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation and sensitivity to parameter estimates. Glob Biogeochem Cycles 24:GB1005. doi: 10.29/2009GB003521
  102. Zaehle S, Friedlingstein P, Friend AD (2010) Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys Res Lett 37:L01401. doi: 10.1029/2009GL041345 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Martin J. Wassen
    • 1
    Email author
  • Hugo J. de Boer
    • 1
  • Katrin Fleischer
    • 1
  • Karin T. Rebel
    • 1
  • Stefan C. Dekker
    • 1
  1. 1.Environmental Sciences, Faculty of Geosciences, Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations