Landscape Ecology

, Volume 28, Issue 5, pp 789–803

Drivers of grassland loss in Hungary during the post-socialist transformation (1987–1999)

  • Marianna Biró
  • Bálint Czúcz
  • Ferenc Horváth
  • András Révész
  • Bálint Csatári
  • Zsolt Molnár
Research Article

Abstract

The increase in the speed of land-cover change experienced worldwide is becoming a growing concern. Major socio-economic transitions, such as the breakdown of socialism in Europe, may lead to particularly high rates of landscape transformations. In this paper we examined the loss of semi-natural grasslands in Hungary between 1987 and 1999. We studied the relationship between 9 potential driving forces and the fate of grasslands using logistic GLMs. Grassland loss was found to be very high (1.31 % per year), which is far higher than either before or after this period. The most influential predictors of grassland loss were environmental and landscape characteristics (soil type, area of remnant grassland patches), and the socio-economic context (distance to paved road, and nearest settlement, human population density). Several processes and relationships can only be understood from a historical perspective (e.g. large extent of afforestation, strong decrease of soil water table). Grassland loss during the study period emerged as a consequence of survival strategies of individual farmers seeking adaptation to the changing environmental and socio-economic conditions, and not urbanization and agricultural intensification which are the main underlying drivers for the ongoing landscape transformations in most parts of the developed world. Though globalization increasingly influences local land use decisions, reconstructing and modelling recent landscape changes cannot be done without a proper understanding of local history and culture. Our analysis shows the importance of large-area yet high resolution landscape change research, which may reveal unexpected patterns of land cover change, undetected at coarser scales.

Keywords

East-Central Europe Land-cover change Logistic GLMs Proximate and underlying driving forces 

Supplementary material

10980_2012_9818_MOESM1_ESM.txt (11 kb)
Electronic appendix: ANOVA tables containing AIC, χ2 and p-values for single term additions and single term deletions, as well as the coefficients for each term in the best model for each type of grassland loss (TXT 12 kb)

References

  1. Antrop M (2005) Why landscapes of the past are important for the future. Landsc Urban Plan 70:21–34CrossRefGoogle Scholar
  2. Baumann M, Kuemmerle T, Elbakidze M, Ozdogan M, Radeloff VC, Keuler NS, Prishchepov V, Kruhlov I, Hostert P (2011) Patterns and drivers of post-socialist farmland abandonement in Western Ukraine. Land Use Policy 28:552–562CrossRefGoogle Scholar
  3. Bičík I, Jeleček L, Štěpánek V (2001) Land-use changes and their social driving forces in Czechia in the 19th and 20th centuries. Land Use Policy 18:65–73CrossRefGoogle Scholar
  4. Biró M (2000) Actual habitat map of the Danube-Tisza Interfluve. Database, Institute of Ecology and Botany, Vácrátót, HungaryGoogle Scholar
  5. Biró M (2011) Változástérképek használata tíz év alatt bekövetkezett élőhelypusztulási tendenciák kimutatására a Kiskunsági-homokhátság területén. Tájökol Lap 9:357–374Google Scholar
  6. Biró M, Révész A, Horváth F, Molnár Zs (2006) Point based mapping of the actual vegetation of a large area in Hungary—description, usability and limitation of the method. Acta Bot Hung 48:247–269CrossRefGoogle Scholar
  7. Biró M, Révész A, Molnár Zs, Horváth F, Czúcz B (2008) Regional habitat pattern of the Duna-Tisza köze in Hungary II. The sand, the steppe and the riverine vegetation; degraded and ruined habitats. Acta Bot Hung 50:21–62CrossRefGoogle Scholar
  8. Burger A (2001) Agricultural development and land concentration in a central European country: a case study of Hungary. Land Use Policy 18:259–268CrossRefGoogle Scholar
  9. Bürgi M, Hersperger AM, Schneeberger N (2004) Driving forces of landscape change—current and new directions. Landscape Ecol 19:857–868CrossRefGoogle Scholar
  10. CORINE LC (2000) CORINE land cover map of Hungary, scale: 1:50 000. GIS Database, FÖMI, Budapest, Hungary. http://www.fomi.hu/corine/
  11. Cramer VA, Hobbs RJ, Standish RJ (2008) What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol Evol 23:104–112Google Scholar
  12. Csatári B (2006) Country visions in East Central Europe. In: Kovács AD (ed) Regionality and/or locality. Center for Regional Studies of the Hungarian Academy of Sciences, Pécs, pp 194–200Google Scholar
  13. Csatári B, Farkas J (2008) Agrarian and rural developments in Hungary, 1990–2005. In: Bańsky J, Bednarek M (eds) Contemporary changes of agriculture in East-Central Europe. Polish Academy of Sciences Institute of Geography and Spatial Organization—Polish Geographical Society, Warsaw, pp 147–164Google Scholar
  14. Czúcz B, Révész A, Horváth F, Biró M (2005) Loss of semi-natural grasslands in the Hungarian forest steppe zone in the last fifteen years: causes and fragmentation patterns. In: McCollin D, Jackson JI (eds) Planning, people and practice: the landscape ecology of sustainable landscapes. Proceedings of the 13th annual IALE (UK) conference. University of Northampton, pp 73–80Google Scholar
  15. Czúcz B, Csecserits A, Botta-Dukát Z, Kröel-Dulay G, Szabó R, Horváth F, Molnár Zs (2011) An indicator framework for the climatic adaptive capacity of natural ecosystems. J Veg Sci 22(4):711–725CrossRefGoogle Scholar
  16. DTA50: Digital Mapping Database (1:50 000 scale), Ministry of Defence, Budapest, Hungary, http://www.topomap.hu
  17. Falcucci A, Maiorani L, Boitani L (2007) Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecol 22:617–631CrossRefGoogle Scholar
  18. Feranec J, Šúri M, Ot’ahel’ J, Cebecauer T, Kolář J, Soukup T, Zdeňková D, Waszmuth J, Vâjdea V, Vĭjdea AM, Nitica C (2000) Inventory of major landscape changes in the Czech Republic, Hungary, Romania and Slovak Republic 1970s–1990s. Int J Appl Earth Obs 2:129–139CrossRefGoogle Scholar
  19. Feranec J, Hazeu G, Christensen S, Jaffrain G (2007) Corine land cover change detection in Europe (case studies of the Netherlands and Slovakia). Land Use Policy 24:234–247CrossRefGoogle Scholar
  20. Feranec J, Jaffrain G, Soukup T, Hazeu G (2010) Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Appl Geogr 30:19–35CrossRefGoogle Scholar
  21. Foley JA, DeFries R, Asner G, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574PubMedCrossRefGoogle Scholar
  22. Fox J, Monette G (1992) Generalized collinearity diagnostics. J Am Stat Assoc 87:178–183Google Scholar
  23. Geist HJ, McConnell WJ, Lambin EF, Moran E, Alves D, Rudel T (2006) Causes and trajectories of land use/cover change. In: Lambin EF, Geist HJ (eds) Land use and land cover change. Local processes and global impacts. Springer, Berlin, pp 41–70Google Scholar
  24. Gimmi U, Lachat T, Bürgi M (2011) Reconstructing the collapse of wetland networks in the Swiss lowlands 1850–2000. Landscape Ecol 26:1071–1083CrossRefGoogle Scholar
  25. Haan CT (2002) Statistical methods in hydrology, 2nd edn. Iowa State University Press, AmesGoogle Scholar
  26. Hatna E, Bakker MM (2011) Abandonment and expansion of arable land in Europe. Ecosystems 14:720–731CrossRefGoogle Scholar
  27. Hersperger AM, Bürgi M (2009) Going beyond landscape change description: quantifying the importance of driving forces of landscape change in a Central European case study. Land Use Policy 26:640–648CrossRefGoogle Scholar
  28. Hietel E, Waldhardt R, Otte A (2005) Linking socio-economic factors, environment and land cover in the German Highlands, 1945–1999. J Environ Manage 75:133–143PubMedCrossRefGoogle Scholar
  29. Kertész M, Kelemen E, Biró M, Kovács-Láng E, Kröel-Dulay G (2011) Ecosystem services and disturbance regime as linkages between environment and society in the Kiskunság region. In: Nagy GG, Kiss V (eds) Borrowing services from nature—methodologies of ecosystem services based on Hungarian case studies. CEEweb for Biodiversity, Budapest, pp 91–110Google Scholar
  30. Kovács Székely I, Szalai J (2009) The impact of climate change on production of Hungarian agriculture, especially on shallow groundwater supply. Proceedings of Budapest Business School, Budapest, pp 79–96Google Scholar
  31. Kovács-Láng E, Molnár E, Kröel-Dulay G, Barabás S (eds) (2008) The KISKUN LTER: long-term ecological research in the Kiskunság, Hungary. Institute of Ecology and Botany, VácrátótGoogle Scholar
  32. Kreybig Soil Map (1934–1944) Kreybig digital database and information system. Research Institute for Soil Science and Agricultural Chemistry, Budapest, HungaryGoogle Scholar
  33. KSH: Hungarian Central Statistical Office Database, Budapest, Hungary http://portal.ksh.hu/portal/page?_pageid=38,447568&_dad=portal&_schema=PORTAL
  34. KSH ÁMÖ (2000) Agriculture in Hungary, 2000—data by settlements and territorial data. Official CD version. Hungarian Central Statistical Office, BudapestGoogle Scholar
  35. Kuemmerle T, Hostert P, Radeloff VC, Perzanowski K, Kruhlov I (2007) Post-socialist forest disturbance in the Carpathian border region of Poland, Slovakia, and Ukraine. Ecol Appl 17:1279–1295PubMedCrossRefGoogle Scholar
  36. Kuemmerle T, Müller D, Griffiths P, Rusu M (2008) Land use change in Southern Romania after the collapse of socialism. Reg Environ Change 9:1–12CrossRefGoogle Scholar
  37. Lakes T, Müller D, Krüger C (2009) Cropland change in southern Romania: a comparison of logistic regressions and artificial neural networks. Landscape Ecol 24:1195–1206CrossRefGoogle Scholar
  38. Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skånes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang 11:261–269CrossRefGoogle Scholar
  39. Lepers E, Lambin EF, Janetos AC, DeFries R, Achard F, Ramankutty N, Scholes RJ (2005) A synthesis of information on rapid land-cover change for the period 1981–2000. Bioscience 55:115–124CrossRefGoogle Scholar
  40. Łowicki D (2008) Land use changes in Poland during transformation, case study of Wielkopolska region. Landsc Urban Plan 87:279–288CrossRefGoogle Scholar
  41. Main-Knorn M, Hostert P, Kozak J, Kuemmerle T (2009) How pollution legacies and land use histories shape post-socialist forest cover trends in the Western Carpathians. Forest Ecol Manag 258:60–70CrossRefGoogle Scholar
  42. Marcucci DJ (2000) Landscape history as a planning tool. Landsc Urban Plan 49:67–87CrossRefGoogle Scholar
  43. Molnár Zs (ed) (2003) A Kiskunság száraz homoki növényzete. (Sand dunes of Hungary.) TermészetBÚVÁR Alapítvány Kiadó, BudapestGoogle Scholar
  44. Molnár Zs, Biró M, Bartha S, Fekete G (2012) Past trends, present state and future prospects of hungarian forest-steppes. In: Werger MJA, van Staalduinen MA (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Dordrecht, pp 209–252CrossRefGoogle Scholar
  45. Monteiro AT, Fava F, Hiltbrunner E, Della Marianna G, Bocchi S (2011) Assessment of land cover changes and spatial drivers behind loss of permanent meadows in the lowland of Italian Alps. Landsc Urban Plan 100:287–294CrossRefGoogle Scholar
  46. Nassauer JI (1995) Culture and changing landscape structure. Landscape Ecol 10:229–237CrossRefGoogle Scholar
  47. Palang H, Printsmann A, Konkoly Gyuró É, Urbanc M, Skowronek E, Woloszyn W (2006) The forgotten rural landscapes of Central and Eastern Europe. Landscape Ecol 21:347–357CrossRefGoogle Scholar
  48. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL http://www.R-project.org/
  49. Révész A, Czúcz B, Horváth F (2004) A települések és az úthálózat szerepe a Duna-Tisza közi természetközeli gyepek pusztulásában. I. Magyar Tájökológiai Konferencia: végleges program, összefoglalók, résztvevők listája, SZIE KTI, Gödöllő, p 59Google Scholar
  50. Rudel TK (1998) Is there a forest transition? Deforestation, reforestation, and development. Rural Sociol 63:533–552CrossRefGoogle Scholar
  51. Schneeberger N, Bürgi M, Hersperger AM, Ewald KC (2007a) Driving forces and rates of landscape change as a promising combination for landscape change research—an application on the northern fringe of the Swiss Alps. Land Use Policy 24:349–361CrossRefGoogle Scholar
  52. Schneeberger N, Bürgi M, Kienast FPD (2007b) Rates of landscape change at the northern fringe of the Swiss Alps: historical and recent tendencies. Landsc Urb Plan 80:127–136CrossRefGoogle Scholar
  53. Süli-Zakar I (1999) Socio-geographical transition in the rural areas of the Carpathian Euroregion. GeoJournal 46:193–197CrossRefGoogle Scholar
  54. Temme AJAM, Verburg PH (2011) Mapping and modelling of changes in agricultural intensity in Europe. Agr Ecosyst Environ 140:46–56CrossRefGoogle Scholar
  55. TIR: Database of the Nature Conservation Information System of Hungary. Ministry of Rural Development, Budapest, Hungary. http://geo.kvvm.hu/tir_en/
  56. Verburg PH, Eickhout B, van Meijl H (2008) A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann Reg Sci 42:57–77CrossRefGoogle Scholar
  57. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  58. VITUKI database: Water Resources Research Centre, Hungary, Budapest. http://www.vituki.hu/
  59. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Marianna Biró
    • 1
  • Bálint Czúcz
    • 1
  • Ferenc Horváth
    • 1
  • András Révész
    • 2
  • Bálint Csatári
    • 3
  • Zsolt Molnár
    • 1
  1. 1.Institute of Ecology and Botany, Centre for Ecological ResearchHungarian Academy of SciencesVácrátótHungary
  2. 2.Calderdale MBCHalifaxUK
  3. 3.Alföld Institute, Centre for Regional StudiesHungarian Academy of SciencesKecskemétHungary

Personalised recommendations