Landscape Ecology

, Volume 28, Issue 5, pp 819–833 | Cite as

Impacts of changing climate and land use on vegetation dynamics in a Mediterranean ecosystem: insights from paleoecology and dynamic modeling

  • Paul D. HenneEmail author
  • Ché Elkin
  • Daniele Colombaroli
  • Stéphanie Samartin
  • Harald Bugmann
  • Oliver Heiri
  • Willy Tinner
Research Article


Forests near the Mediterranean coast have been shaped by millennia of human disturbance. Consequently, ecological studies relying on modern observations or historical records may have difficulty assessing natural vegetation dynamics under current and future climate. We combined a sedimentary pollen record from Lago di Massacciucoli, Tuscany, Italy with simulations from the LandClim dynamic vegetation model to determine what vegetation preceded intense human disturbance, how past changes in vegetation relate to fire and browsing, and the potential of an extinct vegetation type under present climate. We simulated vegetation dynamics near Lago di Massaciucoli for the last 7,000 years using a local chironomid-inferred temperature reconstruction with combinations of three fire regimes (small infrequent, large infrequent, small frequent) and three browsing intensities (no browsing, light browsing, and moderate browsing), and compared model output to pollen data. Simulations with low disturbance support pollen-inferred evidence for a mixed forest dominated by Quercus ilex (a Mediterranean species) and Abies alba (a montane species). Whereas pollen data record the collapse of A. alba after 6000 cal yr bp, simulated populations expanded with declining summer temperatures during the late Holocene. Simulations with increased fire and browsing are consistent with evidence for expansion by deciduous species after A. alba collapsed. According to our combined paleo-environmental and modeling evidence, mixed Q. ilex and A. alba forests remain possible with current climate and limited disturbance, and provide a viable management objective for ecosystems near the Mediterranean coast and in regions that are expected to experience a mediterranean-type climate in the future.


Abies alba Chironomids Fire ecology Holocene Italy Landscape model Mediterranean forest Neolithic Pollen Quercus ilex 



We thank the Swiss National Science Foundation who supported the project SNF PP00P2-114886 and N Fyllas and N Kühl who contributed life history and species distribution data.

Supplementary material

10980_2012_9782_MOESM1_ESM.doc (98 kb)
Supplementary material 1 (DOC 98 kb)


  1. Akeret O, Haas JN, Leuzinger U, Jacomet S (1999) Plant macrofossils and pollen in goat/sheep faeces from the Neolithic lake-shore settlement Arbon Bleiche 3, Switzerland. Holocene 9(2):175–182CrossRefGoogle Scholar
  2. Attorre F, Alfo M, De Sanctis M et al (2011) Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Appl Veg Sci 14(2):242–255CrossRefGoogle Scholar
  3. Aussenac G (2002) Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Ann For Sci 59(8):823–832CrossRefGoogle Scholar
  4. Baldocchi DD, Ma SY, Rambal S et al (2010) On the differential advantages of evergreenness and deciduousness in mediterranean oak woodlands: a flux perspective. Ecol Appl 20(6):1583–1597PubMedCrossRefGoogle Scholar
  5. Battipaglia G, Saurer M, Cherubini P, Siegwolf RTW, Cotrufo MF (2009) Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy. For Ecol Manag 257(3):820–828CrossRefGoogle Scholar
  6. Bellini C, Mariotti-Lippi M, Montanari C (2009) The Holocene landscape history of the NW Italian coasts. Holocene 19(8):1161–1172CrossRefGoogle Scholar
  7. Blondel J (2006) The ‘Design’ of mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol 34(5):713–729CrossRefGoogle Scholar
  8. Bugmann H (1994) On the ecology of mountainous forests in a changing climate: a simulation study. ETH, ZurichGoogle Scholar
  9. Bugmann H, Cramer W (1998) Improving the behaviour of forest gap models along drought gradients. For Ecol Manag 103(2–3):247–263CrossRefGoogle Scholar
  10. Calò C, Henne PD, Curry B et al (2012) Spatio-temporal patterns of Holocene environmental change in southern Sicily. Palaeogeogr Palaeoclimatol Palaeoecol 323–325:110–122CrossRefGoogle Scholar
  11. Carrión JS, Fernández S (2009) The survival of the ‘natural potential vegetation’ concept (or the power of tradition). J Biogeogr 36(12):2202–2203CrossRefGoogle Scholar
  12. Carrión JS, Fernández S, Jiménez-Moreno G et al (2010) The historical origins of aridity and vegetation degradation in southeastern Spain. J Arid Environ 74(7):731–736CrossRefGoogle Scholar
  13. Cierjacks A, Hensen I (2004) Variation of stand structure and regeneration of Mediterranean holm oak along a grazing intensity gradient. Plant Ecol 173(2):215–223CrossRefGoogle Scholar
  14. Colombaroli D, Marchetto A, Tinner W (2007) Long-term interactions between Mediterranean climate, vegetation and fire regime at Lago di Massaciuccoli (Tuscany, Italy). J Ecol 95(4):755–770CrossRefGoogle Scholar
  15. Colombaroli D, Tinner W, van Leeuwen J et al (2009) Response of broadleaved evergreen Mediterranean forest vegetation to fire disturbance during the Holocene: insights from the peri-Adriatic region. J Biogeogr 36(2):314–326CrossRefGoogle Scholar
  16. Colombaroli D, Henne PD, Kaltenrieder P, Gobet E, Tinner W (2010) Species responses to fire, climate and human impact at tree line in the Alps as evidenced by palaeo-environmental records and a dynamic simulation model. J Ecol 98(6):1346–1357CrossRefGoogle Scholar
  17. Di Rita F, Magri D (2009) Holocene drought, deforestation and evergreen vegetation development in the central Mediterranean: a 5500 year record from Lago Alimini Piccolo, Apulia, southeast Italy. Holocene 19(2):295–306CrossRefGoogle Scholar
  18. Didion M, Kupferschmid AD, Bugmann H (2009) Long-term effects of ungulate browsing on forest composition and structure. For Ecol Manag 258(Supplement):S44–S55CrossRefGoogle Scholar
  19. Dupouey JL, Dambrine E, Laffite JD, Moares C (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83(11):2978–2984CrossRefGoogle Scholar
  20. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. E. Ulmer, StuttgartGoogle Scholar
  21. Finsinger W, Colombaroli D, De Beaulieu JL et al (2010) Early to mid-Holocene climate change at Lago dell’Accesa (central Italy): climate signal or anthropogenic bias? J Quat Sci 25(8):1239–1247CrossRefGoogle Scholar
  22. Fyllas NM, Phillips OL, Kunin WE, Matsinos YG, Troumbis AI (2007) Development and parameterization of a general forest gap dynamics simulator for the North-eastern Mediterranean Basin (GREek FOrest Species). Ecol Model 204:439–456CrossRefGoogle Scholar
  23. Gao XJ, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob Planet Change 62(3–4):195–209CrossRefGoogle Scholar
  24. Gessler PE, Chadwick OA, Chamran F, Althouse L, Holmes K (2000) Modeling soil-landscape and ecosystem properties using terrain attributes. Soil Sci Soc Am J 64(6):2046–2056CrossRefGoogle Scholar
  25. Giraudi C, Magny M, Zanchetta G, Drysdale RN (2011) The Holocene climatic evolution of Mediterranean Italy: a review of the continental geological data. Holocene 21(1):105–115CrossRefGoogle Scholar
  26. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009CrossRefGoogle Scholar
  27. Heiri C, Bugmann H, Tinner W, Heiri O, Lischke H (2006) A model-based reconstruction of Holocene treeline dynamics in the Central Swiss Alps. J Ecol 94(1):206–216CrossRefGoogle Scholar
  28. Heiri O, Brooks SJ, Birks HJB, Lotter AF (2011) A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat Sci Rev 30(23–24):3445–3456CrossRefGoogle Scholar
  29. Henne PD, Elkin CM, Reineking B, Bugmann H, Tinner W (2011) Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical hypothesis with a dynamic landscape model. J Biogeogr 38(5):933–949CrossRefGoogle Scholar
  30. Jalut G, Dedoubat JJ, Fontugne M, Otto T (2009) Holocene circum-Mediterranean vegetation changes: climate forcing and human impact. Quat Int 200(1–2):4–18CrossRefGoogle Scholar
  31. Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S (2010) Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Glob Change Biol 17(1):565–579CrossRefGoogle Scholar
  32. Keller F, Lischke H, Mathis T et al (2002) Effects of climate, fire, and humans on forest dynamics: forest simulations compared to the palaeological record. Ecol Model 152(2–3):109–127CrossRefGoogle Scholar
  33. Lloret F, Calvo E, Pons X, Diaz-Delgado R (2002) Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landscape Ecol 17(8):745–759CrossRefGoogle Scholar
  34. Magny M, de Beaulieu JL, Drescher-Schneider R et al (2007) Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quat Sci Rev 26(13–14):1736–1758CrossRefGoogle Scholar
  35. Malone C (2003) The Italian Neolithic: a synthesis of research. J World Prehistory 17(3):235–312CrossRefGoogle Scholar
  36. Marchetto A, Colombaroli D, Tinner W (2008) Diatom response to mid-Holocene climate change in Lago di Massaciuccoli (Tuscany, Italy). J Paleolimnol 40(1):235–245CrossRefGoogle Scholar
  37. Mariotti Lippi M, Guido M, Menozzi B, Bellini C, Montanari C (2007) The Massaciuccoli Holocene pollen sequence and the vegetation history of the coastal plains by the Mar Ligure (Tuscany and Liguria, Italy). Veg Hist Archaeobot 16(4):267–277CrossRefGoogle Scholar
  38. Motta R (1996) Impact of wild ungulates on forest regeneration and tree composition of mountain forests in the Western Italian Alps. For Ecol Manag 88(1–2):93–98CrossRefGoogle Scholar
  39. Overpeck JT, Whitlock C, Huntley B (2003) Terrestrial biosphere dynamics in the climate system: past and future. In: Alverson KD, Bradley RS, Pedersen TF (eds) Paleoclimate. Global change and the future. Springer, Berlin, pp 81–103CrossRefGoogle Scholar
  40. Pedrotti CC (1967) L’abetina di Varramista (Pisa). Flora fanerogamica e briologica e caratteristiche geobotaniche. Webbia 22(1):39–65CrossRefGoogle Scholar
  41. Pranzini E (2001) Updrift river mouth migration on cuspate deltas: two examples from the coast of Tuscany (Italy). Geomorphology 38(1–2):125–132CrossRefGoogle Scholar
  42. Reineking B, Weibel P, Conedera M, Bugmann H (2010) Environmental determinants of lightning- v. human-induced forest fire ignitions differ in a temperate mountain region of Switzerland. Int J Wildland Fire 19(5):541–557CrossRefGoogle Scholar
  43. Robakowski P (2005) Susceptibility to low-temperature photoinhibition in three conifers differing in successional status. Tree Physiol 25(9):1151–1160PubMedCrossRefGoogle Scholar
  44. Rossi V, Amorosi A, Sarti G, Potenza M (2011) Influence of inherited topography on the Holocene sedimentary evolution of coastal systems: an example from Arno coastal plain (Tuscany, Italy). Geomorphology 135(1–2):117–128CrossRefGoogle Scholar
  45. Rothermal RC (1972) A mathematical model for predicting fire spread in wild land fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station Research Paper, Ogden UTGoogle Scholar
  46. Rovelli E (1995) La distribuzione dell’abete (Abies alba Mill.) sull’Appennino. Monti e Boschi 46(6):5–13Google Scholar
  47. Rustioni M, Mazza P, Magnatti M (2007) Multivariable analysis of an Italian Late Neolithic archaeofauna. J Archaeol Sci 34(5):723–738CrossRefGoogle Scholar
  48. Sadori L, Mercuri AM, Lippi MM (2010) Reconstructing past cultural landscape and human impact using pollen and plant macroremains. Plant Biosyst 144(4):940–951CrossRefGoogle Scholar
  49. Sadori L, Jahns S, Peyron O (2011) Mid-Holocene vegetation history of the central Mediterranean. Holocene 21(1):117–129CrossRefGoogle Scholar
  50. Samartin S (2011) Chironomid-based environmental and climatic reconstructions for the past 30,000 years from the northern Italian peninsula. University of Bern, BernGoogle Scholar
  51. Schröter D, Cramer W, Leemans R et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337PubMedCrossRefGoogle Scholar
  52. Schumacher S, Bugmann H (2006) The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Glob Change Biol 12(8):1435–1450CrossRefGoogle Scholar
  53. Schumacher S, Bugmann H, Mladenoff DJ (2004) Improving the formulation of tree growth and succession in a spatially explicit landscape model. Ecol Model 180(1):175–194CrossRefGoogle Scholar
  54. Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87(2):273–289CrossRefGoogle Scholar
  55. Tinner W, van Leeuwen JFN, Colombaroli D et al (2009) Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quat Sci Rev 28(15–16):1498–1510CrossRefGoogle Scholar
  56. USDA (2011) National soil survey handbook, title 430-VI. Accessed 24 Jan 2011
  57. Vannière B, Colombaroli D, Chapron E, Leroux A, Tinner W, Magny M (2008) Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat Sci Rev 27(11–12):1181–1196CrossRefGoogle Scholar
  58. Wick L, Mohl A (2006) The mid-Holocene extinction of silver fir (Abies alba) in the Southern Alps: a consequence of forest fires? Palaeobotanical records and forest simulations. Veg Hist Archaeobot 15(4):435–444CrossRefGoogle Scholar
  59. Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation. Science 314(5803):1261–1265PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Paul D. Henne
    • 1
    • 2
    • 3
    Email author
  • Ché Elkin
    • 2
  • Daniele Colombaroli
    • 1
  • Stéphanie Samartin
    • 1
  • Harald Bugmann
    • 2
  • Oliver Heiri
    • 1
  • Willy Tinner
    • 1
    • 2
  1. 1.Institute of Plant Sciences and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  2. 2.Forest Ecology, Department of Environmental SciencesETH ZurichZurichSwitzerland
  3. 3.Institute of Plant SciencesUniversity of BernBernSwitzerland

Personalised recommendations