Landscape Ecology

, Volume 28, Issue 5, pp 835–846 | Cite as

Soil carbon pools in Swiss forests show legacy effects from historic forest litter raking

  • Urs GimmiEmail author
  • Benjamin Poulter
  • Annett Wolf
  • Hanspeter Portner
  • Pascale Weber
  • Matthias Bürgi
Research Article


Globally, forest soils contain twice as much carbon as forest vegetation. Consequently, natural and anthropogenic disturbances affecting carbon accumulation in forest soils can alter regional to global carbon balance. In this study, we evaluate the effects of historic litter raking on soil carbon stocks, a former forest use which used to be widespread throughout Europe for centuries. We estimate, for Switzerland, the carbon sink potential in current forest soils due to recovery from past litter raking (‘legacy effect’). The year 1650 was chosen as starting year for litter raking, with three different end years (1875/1925/1960) implemented for this forest use in the biogeochemical model LPJ-GUESS. The model was run for different agricultural and climatic zones separately. Number of cattle, grain production and the area of wet meadow have an impact on the specific demand for forest litter. The demand was consequently calculated based on historical statistical data on these factors. The results show soil carbon pools to be reduced by an average of 17 % after 310 years of litter raking and legacy effects were still visible 130 years after abandonment of this forest use (2 % average reduction). We estimate the remaining carbon sink potential in Swiss forest due to legacy effects from past litter raking to amount to 158,000 tC. Integrating historical data into biogeochemical models provides insight into the relevance of past land-use practices. Our study underlines the importance of considering potentially long-lasting effects of such land use practices for carbon accounting.


Historical ecology Land-use legacy Soil carbon pool Biogeochemical modeling Recovery time Switzerland 



We would like to thank the two anonymous reviewers for their valuable inputs. We appreciate the development of LPJ-GUESS by Ben Smith and Paul Miller at the Ecosystem Modelling and Biodiversity Studies Group at the Department of Earth and Ecosystem Sciences, Lund University.


  1. Alberti G, Peressotti A, Piussi P, Zerbi G (2008) Forest ecosystem carbon accumulation during a secondary succession in the Eastern Prealps of Italy. Forestry 81:1–11CrossRefGoogle Scholar
  2. Becker-Dillingen J (1927) Handbuch des Getreidebaus. Parey, BerlinGoogle Scholar
  3. Bellassen V, Viovy N, Luyssaert S, Le Marie G, Schelhaas MJ, Ciais P (2011) Reconstruction and attribution of carbon sink of European forests between 1950 and 2000. Glob Chang Biol 17:3274–3293CrossRefGoogle Scholar
  4. BFS Bundesamst für Statistik (2001) BFS GEOSTAT,WaldmischungsgradGoogle Scholar
  5. Blaser P, Zimmermann S, Luster J, Walthert L, Lüscher P (2005) Waldböden der Schweiz. Band 2. Regionen Alpen und Alpensüdseite. Hep Verlag, Bern, SwitzerlandGoogle Scholar
  6. Brändli UB (Ed.) (2010) Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006. Eidgenössische Forschungsanstalt WSL, Birmensdorf; Bundesamt für Umwelt, BernGoogle Scholar
  7. Bürgi M (1999) A case study of forest change in the Swiss lowlands. Landscape Ecol 14:567–575CrossRefGoogle Scholar
  8. Bürgi M, Gimmi U (2007) Three objectives of historical ecology: the case of litter collecting in Central European forests. Landscape Ecol 22:77–87CrossRefGoogle Scholar
  9. Chauchard S, Carcailet C, Guibal F (2007) Pattern of land-use abandonment control tree recruitment and forest dynamics in Mediterranean mountains. Ecosystems 10:936–948CrossRefGoogle Scholar
  10. Ciais P, Schelhaas MJ, Zaehle S, Piao SL, Cescatti A, Liski J, Luyssaert S, Le-Maire G, Schulze E-D, Bouriaud O, Freibauer A, Valentini R, Nabuurs GJ (2008) Carbon accumulation in European forests. Nat Geosci 1:425–429CrossRefGoogle Scholar
  11. Dambrine E, Dupouey JL, Laut L, Humbert L, Thinon M, Beaufils T, Richard H (2007) Present forest biodiversity patterns in France related to former Roman agriculture. Ecology 88:1430–1439CrossRefGoogle Scholar
  12. Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190CrossRefGoogle Scholar
  13. Dupouey JL, Dambrine E, Laffite JD, Moares C (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984CrossRefGoogle Scholar
  14. Dzwonko Z, Gawronski S (2002) Effect of litter removal on species richness and acidification of a mixed oak-pine woodland. Biol Conserv 106:389–398CrossRefGoogle Scholar
  15. Ebermayer E (1876) Die gesamte Lehre der Waldstreu mit Rücksicht auf die chemische Statik des Waldbaus. Springer, BerlinGoogle Scholar
  16. Edmonds RL (1987) Decomposition rates and nutrient dynamics in small-diameter woody litter in four forest ecosystems in Washington, U.S.A. Can J For Res 17:499–509CrossRefGoogle Scholar
  17. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefGoogle Scholar
  18. Foley JA (1995) An equilibrium model of the global carbon cycle. Tellus 47B:310–319Google Scholar
  19. Früh J, Schröter C (1904) Die Moore der Schweiz mit Berücksichtigung der gesamten Moorfrage. Francke, BernGoogle Scholar
  20. Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765CrossRefGoogle Scholar
  21. Gimmi U, Bürgi M (2007) Using oral history and forest management plans to reconstruct traditional non-timber forest uses in the Swiss Rhone valley (Valais) since the late nineteenth century. Environ Hist 13:211–246CrossRefGoogle Scholar
  22. Gimmi U, Bürgi M, Stuber M (2008) Reconstructing anthropogenic disturbance regimes in forest ecosystems: a case study from the Swiss Rhone Valley. Ecosystems 11:113–124CrossRefGoogle Scholar
  23. Gimmi U, Wohlgemuth T, Rigling A, Hoffmann CW, Bürgi M (2010) Land-use and climate change effects in forest compositional trajectories in a dry Central-Alpine valley. Ann For Sci 67:701CrossRefGoogle Scholar
  24. Gimmi U, Lachat T, Bürgi M (2011) Reconstructing the collapse of wetland networks in the Swiss lowlands 1850–2000. Landscape Ecol 26:1071–1083CrossRefGoogle Scholar
  25. Glatzel G (1990) The nitrogen status of Austrian forest ecosystems as influenced by atmospheric deposition, biomass harvesting and lateral organomass exchange. Plant Soil 128:67–74CrossRefGoogle Scholar
  26. Glatzel G (1991) The impact of historic land use and modern forestry on nutrient relations in Central European forest ecosystems. Fertil Res 27:1–8CrossRefGoogle Scholar
  27. Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L, Giesecke T, Fronzek S, Carter TR, Cramer W, Kühn I, Sykes MT (2012) Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob Ecol Biogeogr 21:50–63CrossRefGoogle Scholar
  28. Högberg MN, Myrold DD, Giesler R, Högberg P (2006) Contrasting patterns of soil N-cycling in model ecosystems of Fennoscandian boreal forests. Oecologia 147:96CrossRefGoogle Scholar
  29. Hurtt GC, Frolking S, Fearon MG, Moore B, Shevliakova E, Malyshev S, Pacala S, Houghton RA (2006) The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Glob Chang Biol 12:1208–1229CrossRefGoogle Scholar
  30. Hüttl RF, Schaaf W (1995) Nutrient supply of forest soils in relation to management and site history. Plant Soil 168:31–41CrossRefGoogle Scholar
  31. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268CrossRefGoogle Scholar
  32. Janzen HH (2004) Carbon cycling in earth systems: a soil science perspective. Agric Ecosyst Environ 104:399–417CrossRefGoogle Scholar
  33. Kaplan JO, Krumhardt KM, Zimmermann NE (2012) The effects of land use and climate change on the carbon cycle of Europe over the past 500 years. Glob Chang Biol 18:902–914CrossRefGoogle Scholar
  34. Luyssaert S, Ciais P, Piao SL, Schulze E-D, Jung M, Zaehle S, Schelhaas MJ, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs GJ, Verbeeck H, Sulkava M, Van der Werf GR, Janssens IA, CARBOEUROPE-IP synthesis team (2010) The European carbon balance. Part 3: forests. Global Chang Biol 16:1429–1450CrossRefGoogle Scholar
  35. Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740CrossRefGoogle Scholar
  36. Mather AS, Fairbairn J (2000) From floods to reforestation: the forest transition in Switzerland. Environ Hist 6:399–421CrossRefGoogle Scholar
  37. Meentemeyer V (1978) Macroclimate and the lignin control of litter decomposition rates. Ecology 59:465–472CrossRefGoogle Scholar
  38. Melillo JM, Naiman RJ, Aber JD, Linkins AE (1984) Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bull Mar Sci 35:341–356Google Scholar
  39. Monteith JL (1995) Accommodation between transpiring vegetation and the convective boundary layer. J Hydrol 166:251–263CrossRefGoogle Scholar
  40. New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238CrossRefGoogle Scholar
  41. Paravicini E (1928) Die Bodennutzungssysteme der Schweiz in ihrer Verbreitung und Bedingtheit. Justus Perthes, GothaGoogle Scholar
  42. Perruchoud D, Kienast F, Kaufmann E, Bräker OU (1999) 20th century carbon budget of forest soils in the Alps. Ecosystems 2:320–337CrossRefGoogle Scholar
  43. Perruchoud D, Walthert L, Zimmermann S, Lüscher P (2000) Contemporary carbon stocks of mineral forest soils in the Swiss Alps. Biogeochemistry 50:111–136CrossRefGoogle Scholar
  44. Portner H, Wolf A, Bugmann H (2010) Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes. Biogeosciences 7:3669–3684CrossRefGoogle Scholar
  45. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–328CrossRefGoogle Scholar
  46. Ritzmann-Blickensdorfer H (1996) Historische Statistik der Schweiz. Chronos, ZürichGoogle Scholar
  47. Roth L, Bürgi M (2006) Bettlaubsammeln als Streunutzung im St.Galler Rheintal. Schweizerische Zeitschrift für Forstwesen 157:348–356CrossRefGoogle Scholar
  48. Schüepp M, Gensler G (1980) Klimaregionen der Schweiz. In: Müller G (ed) Beobachtungsnetze der Schweizerischen Meteorologischen Anstalt. Konzept 1980. Arbeitsbericht der Schweizerischen Meteorologischen Zentralanstalt 93. Anhang 1b. Schweizerische Meteorologische Anstalt, ZürichGoogle Scholar
  49. Smith P, Powlson D, Glendining M, Smith J (1997) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Glob Chang Biol 3:67–79CrossRefGoogle Scholar
  50. Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 10:621–637CrossRefGoogle Scholar
  51. Staatsarchiv des Kantons Zürich (1884–1910) Statistische Mittheilungen betreffend den Kanton Zürich, vol 104. University of CaliforniaGoogle Scholar
  52. Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104CrossRefGoogle Scholar
  53. Thornton PE, Lamarque JF, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response of CO2 fertilization and climate variability. Glob Biogeochem Cycles 21:GB4018CrossRefGoogle Scholar
  54. Thürig E, Palosuo T, Bucher J, Kaufmann E (2005) The impact of windthrow on carbon sequestration in Switzerland: a model-based assessment. For Ecol Manag 210:337–350CrossRefGoogle Scholar
  55. United Nations Framework Convention on Climate Change (UNFCCC): National Inventory Submissions 2011. (; Accessed Oct 2011)
  56. Weber P, Rigling A, Bugmann H (2008) Sensitivity of stand dynamics to grazing in mixed Pinus sylvestris and Quercus pubescens forests: a modelling study. Ecol Model 210:301–311CrossRefGoogle Scholar
  57. Yurova AY, Volodin EM, Ågren GI, Chertov OG, Komarov AS (2010) Effects of variations in simulated changes in soil carbon contents and dynamics on future climate projections. Glob Chang Biol 16:823–835CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Urs Gimmi
    • 1
    Email author
  • Benjamin Poulter
    • 1
    • 2
  • Annett Wolf
    • 3
  • Hanspeter Portner
    • 3
  • Pascale Weber
    • 4
  • Matthias Bürgi
    • 1
  1. 1.Research Unit Landscape DynamicsSwiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.Laboratoire des Sciences du Climat et l’Environement (LSCE)Gif sur YvetteFrance
  3. 3.Forest Ecology, Department of Environmental SciencesInstitute of Terrestrial Ecosystems, Swiss Federal Institute of Technology ETHZurichSwitzerland
  4. 4.Research Unit Soil SciencesSwiss Federal Research Institute WSLBirmensdorfSwitzerland

Personalised recommendations