Advertisement

Landscape Ecology

, Volume 27, Issue 4, pp 585–598 | Cite as

Forest fragmentation, climate change and understory fire regimes on the Amazonian landscapes of the Xingu headwaters

  • Britaldo Soares-Filho
  • Rafaella Silvestrini
  • Daniel Nepstad
  • Paulo Brando
  • Hermann Rodrigues
  • Ane Alencar
  • Michael Coe
  • Charton Locks
  • Letícia Lima
  • Letícia Hissa
  • Claudia Stickler
Research Article

Abstract

Understory fire modeling is a key tool to investigate the cornerstone concept of landscape ecology, i.e. how ecological processes relate to landscape structure and dynamics. Within this context, we developed FISC—a model that simulates fire ignition and spread and its effects on the forest carbon balance. FISC is dynamically coupled to a land-use change model to simulate fire regimes on the Amazonian landscapes of the Xingu Headwaters under deforestation, climate change, and land-use management scenarios. FISC incorporates a stochastic cellular automata approach to simulate fire spread across agricultural and forested lands. CARLUC, nested in FISC, simulates fuel dynamics, forest regrowth, and carbon emissions. Simulations of fire regimes under modeled scenarios revealed that the major current and future driver of understory fires is forest fragmentation rather than climate change. Fire intensity proved closely related to the landscape structure of the remaining forest. While climate change may increase the percentage of forest burned outside protected areas by 30% over the next four decades, deforestation alone may double it. Nevertheless, a scenario of forest recovery and better land-use management would abate fire intensity by 18% even in the face of climate change. Over this time period, the total carbon balance of the Xingu’s forests varies from an average net sink of 1.6 ton ha−1 year−1 in the absence of climate change, fire and deforestation to a source of −0.1 ton ha−1 year−1 in a scenario that incorporates these three processes.

Keywords

Carbon fluxes Landscape dynamics Landscape metrics Spatially-explicit modeling Land-use management 

Notes

Acknowledgments

We thank the Gordon and Betty Moore Foundation, the David and Lucille Packard Foundation, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and the Large-Scale Biosphere Atmosphere Experiment for funding. Special thanks go to Jennifer Balch and the field team.

Supplementary material

10980_2012_9723_MOESM1_ESM.docx (5.3 mb)
Supplementary material 1 (DOCX 5438 kb)

References

  1. Alencar A, Solorzano LA, Nepstad DC (2004) Modeling forest understory fires in an eastern Amazonian landscape. Ecol Appl 14(4):S139–S149CrossRefGoogle Scholar
  2. Alencar A, Nepstad DC, Vera Diaz MDC (2006) Forest understory fire in the Brazilian Amazon in ENSO and non ENSO years: area burned and committed carbon emissions. Earth Interact 10:1–16CrossRefGoogle Scholar
  3. Alencar A, Asner GP, Knapp D, Zarin D (2011) Temporal variability of forest fires in eastern Amazonia. Ecol Appl 21(7):2397–2412PubMedCrossRefGoogle Scholar
  4. Almeida CM, Gleriani JM, Castejon EF, Soares-Filho BS (2008) Neural networks and cellular automata for modeling intra-urban land use dynamics. Int J Geogr Inf Sci 22(9):943–963CrossRefGoogle Scholar
  5. Aragão LEOC, Shimabokuro YE (2010) The incidence of fire in Amazonian forests with implications for REDD. Science 328:1275–1278PubMedCrossRefGoogle Scholar
  6. Balch JK, Nepstad DC, Brando PM, Curran LM, Portela O, Carvalho O Jr, Lefebvre P (2008) Negative fire feedback in a transitional forest of Southeastern Amazonia. Glob Change Biol 14:1–12CrossRefGoogle Scholar
  7. Barlow J, Peres CA (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos Trans R Soc B 363(1498):1787–1794CrossRefGoogle Scholar
  8. Betts RA, Cox PM, Collins M, Harris PP, Huntingford C, Jones CD (2004) The role of ecosystem-atmosphere interactions in simulated Amazon forest dieback under global climate warming. Theor Appl Climatol 78:157–175CrossRefGoogle Scholar
  9. Cardoso MF, Hurtt CG, Moore (2003) Projecting future fire activity in Amazonia. Glob Change Biol 9:656–669CrossRefGoogle Scholar
  10. Carmenta R, Parry L, Blackburn A, Vermeylen S, Barlow J (2011) Understanding human-fire interactions in tropical forest regions: a case for interdisciplinary research across the natural and social sciences. Ecol Soc 16(1):53Google Scholar
  11. Cochrane MA (2003) Fire science for rainforests. Nature 421:913–919PubMedCrossRefGoogle Scholar
  12. Cochrane MA, Barber CP (2009) Climate change, human land use and future fire in the Amazon. Glob Change Biol 15:601–612CrossRefGoogle Scholar
  13. Cochrane MA, Alencar A, Shulze MD, Souza CM Jr, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284:1832–1835PubMedCrossRefGoogle Scholar
  14. Collins M, The CMIP Modelling Groups: BMRC (Australia), CCC (Canada), CCSR/NIES (Japan), CERFACS (France), CSIRO (Austraila), MPI (Germany), GFDL (USA), GISS (USA), IAP (China), INM (Russia), LMD (France), MRI (Japan), NCAR (USA), NRL (USA), Hadley Centre (UK), YNU (South Korea) (2005) El Niño- or La Niña-like climate change? Clim Dyn 24:89–104CrossRefGoogle Scholar
  15. Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCMsimulation of climate and sensitivity. Clim Dyn 15:183–203CrossRefGoogle Scholar
  16. Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol 78(1–3):137–156Google Scholar
  17. Cox PM, Harris PH, Huntingford C, Betts RA, Collins M, Jones CD, Jupp TE, Marengo JA, Nobre CA (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212–216PubMedCrossRefGoogle Scholar
  18. Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics: strength, universality, and consistency. Ecol Indic 8:691–703CrossRefGoogle Scholar
  19. Fearnside PM (1997) Greenhouse gases emissions from deforestation in Amazonia: net committed emissions. Clim Change 35:321–360CrossRefGoogle Scholar
  20. Forman RTT, Godron M (1986) Landscape ecology. Wiley, New YorkGoogle Scholar
  21. Green DG (1983) Shapes of simulated fires in discrete fuels. Ecol Model 20:21–32CrossRefGoogle Scholar
  22. Hirsch AI, Little WS, Houghton RA, Scott NA, White JD (2004) The net carbon flux due to deforestation and forest regrowth in the Brazilian Amazon: analysis using a process-based model. Glob Change Biol 10:908–924CrossRefGoogle Scholar
  23. Houghton RA, Skole DL, Nobre CA, Hackler JL, Lawrence KT, Chomentowski WH (2000) Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403:301–304PubMedCrossRefGoogle Scholar
  24. IPCC (2007) Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  25. Johnstone J, Rupp T, Olson M, Verblya D (2011) Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests. Landscape Ecol 26:487–500CrossRefGoogle Scholar
  26. Kapos V, Ganade G, Matsui E (1993) d13C as an indicator of edge effects in tropical rainforest reserves. J Ecol 81:425–431CrossRefGoogle Scholar
  27. Malhi YJ, Aragão LEOC, Galbraith D, Huntingford C, Fisherd R, Zelazowski P, Sitche S, McSweeneya C, Meirb P (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc Natl Acad Sci USA 106:20610–20615PubMedCrossRefGoogle Scholar
  28. Marengo JA, Nobre CA, Tomasela J, Oyama MD, Oliveira GS, Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21:495–516CrossRefGoogle Scholar
  29. Melillo JM, McGuire DA, Kicklighter DW, Moore B III, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240CrossRefGoogle Scholar
  30. Nepstad DC, Verissimo A, Alencar A, Nobre C, Lima E, Lefebvre P, Shlesinger P, Potterk C, Moutinho P, Mendoza E, Cochrane M, Brooksk V (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508CrossRefGoogle Scholar
  31. Nepstad DC, Lefebvre P, Silva UL, Tomasella J, Schlesinger P, Solórzano L, Moutinho P, Ray D, Benito JG (2004) Amazon drought and its implications for forest flammability and tree growth: a basin wide analysis. Glob Change Biol 10:1–14CrossRefGoogle Scholar
  32. Nepstad DC, Shwartzman S, Bamberger B, Santilli M, Ray D, Schlesinger P, Lefebvre P, Alencar A, Prinz E, Fiske G, Rolla A (2006) Inhibition of Amazon deforestation and fire by parks and indigeous Lands. Conserv Biol 20:65–73PubMedCrossRefGoogle Scholar
  33. Nepstad DC, Stickler C, Soares Filho BS, Merry F (2008) Interactions among Amazon land use, forests, and climate: prospects for a near-term forest tipping point. Philos Trans R Soc B 363(1498):1737–1746CrossRefGoogle Scholar
  34. Nepstad D, Soares-Filho BS, Merry F, Lima A, Moutinho P, Carter J, Bowman M, Cattaneo A, Rodrigues H, Schwartzman S, McGrath DG, Stickler CM, Lubowski R, Piris-Cabezas P, Rivero S, Alencar A, Almeida O, Stella O (2009) The end of deforestation in the Brazilian Amazon. Science 326:1350–1351PubMedCrossRefGoogle Scholar
  35. Oyama MD, Nobre CA (2003) A new climate-vegetation equilibrium state for Tropical South America. Geophys Res Lett 30(23):2199. doi: 10.1029/2003GL018600.2003 CrossRefGoogle Scholar
  36. Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker TR, Bánki O, Blanc L, Bonal D, Brando P, Chave J, Oliveira ACA, Cardozo ND, Czimczik CI, Feldpausch TR, Freitas MA, Gloor E, Higuchi N, Jiménez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill DA, Nepstad D, Patiño S, Peñuela MC, Prieto A, Ramírez F, Schwarz M, Silva J, Silveira M, Thomas AS, Steege H, Stropp J, Vásquez R, Zelazowski P, Dávila EA, Andelman S, Andrade A, Chao KJ, Erwin T, Di Fiore A, Honorio E, Keeling H, Killeen TJ, Laurance WF, Cruz AP, Pitman NCA, Vargas PN, Ramírez-Ângulo H, Rudas A, Salamão R, Silva N, Terborgh J, Torres-Lezama A (2009) Drought sensitivity of the Amazon rainforest. Science 323:1345–1347CrossRefGoogle Scholar
  37. Phulpin T, Lavenu F, Bellan MF, Mougenot B, Blasco F (2002) Using SPOT-4 HRVIR and vegetation sensors to assess impact of tropical forest fires in Roraima, Brazil. Int J Remote Sens 23:1943–1966CrossRefGoogle Scholar
  38. Ramming A, Jupp T, Thonicke K, Tietjen B, Heinke J, Ostberg S, Lucht W, Cramer W, Cox P (2010) Estimating the risk of Amazonian forest dieback. New Phytol 87(3):694–706CrossRefGoogle Scholar
  39. Ray D, Nepstad D, Moutinho P (2005) Micrometeorological and canopy controls of fire susceptibility in forested Amazon landscape. Ecol Appl 15:1664–1678CrossRefGoogle Scholar
  40. Saatchi SS, Houghton RA, Alvalá RCS, Soares JV, Yu Y (2007) Distribution of aboveground live biomass in the Amazon Basin. Glob Change Biol 13:816–837CrossRefGoogle Scholar
  41. Sampaio G, Nobre C, Costa MH, Satyamurty P, Soares-Filho BS, Cardoso M (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett 34(17):L17709. doi: 10.1029/2007GL030612 CrossRefGoogle Scholar
  42. Santos SNM, Costa MH (2004) A simple tropical ecosystem model of carbon, water and energy fluxes. Ecol Model 176:291–312CrossRefGoogle Scholar
  43. Silvestrini RA, Soares-Filho BS, Nepstad D, Coe M, Rodrigues HO, Assunção R (2011) Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecol Appl 21(5):1573–1590PubMedCrossRefGoogle Scholar
  44. Sismanoglu RA, Setzer AW (2005) Risco de fogo da vegetação na América do Sul: comparação de três versões na estiagem de 2004. Paper presented at the XII Simpósio Brasileiro de Sensoriamento Remoto, Goiania, Brazil, 16–21 Apr 2005Google Scholar
  45. Soares Filho BS, Pennachin CL, Cerqueira G (2002) DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol Model 154(3):217–235CrossRefGoogle Scholar
  46. Soares-Filho BS, Nepstad DC, Curran LM, Cerqueira GC, Garcia RA, Ramos CA, Voll E, McDonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon basin. Nature 440(7083):520–523PubMedCrossRefGoogle Scholar
  47. Soares-Filho BS, Rodrigues HO, Costa WL (2010a) Modeling environmental dynamics with dinamica EGO. Centro de Sensoriamento Remoto, Belo Horizonte, Brazil. http://www.csr.ufmg.br/dinamica. Accessed May 2010
  48. Soares-Filho BS, Moutinho P, Nepstad D, Anderson A, Rodrigues H, Garcia R, Dietzsch L, Merry F, Bowman M, Hissa L, Silvestrini R, Maretti C (2010b) Role of Brazilian Amazon protected areas in climate change mitigation. Proc Natl Acad Sci USA 107(24):10821–10826PubMedCrossRefGoogle Scholar
  49. Stickler CM, Nepstad DC, Coe MT, Mcgrath DG, Rodrigues HO, Walker WS, Soares-Filho BS, Davidson EA (2009) The potential ecological costs and co-benefits of REDD: a critical review and case study from the Amazon region. Glob Change Biol 15:2803–2824CrossRefGoogle Scholar
  50. Turner MG, Romme WH (1994) Landscape dynamics in crown fire ecosystems. Landscape Ecol 9:59–77CrossRefGoogle Scholar
  51. Van der Werf GR, Morton DC, DeFries RS, Giglio L, Randerson JT, Collatz GJ, Kasibhatla PS (2009) Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling. Biogeosciences 6:235–249CrossRefGoogle Scholar
  52. World Bank (2010) Assessment of the risk of Amazon dieback Main Report. World Bank, Climate Change and Clean Energy Initiative, Environmentally and Socially Sustainable Development Department, Latin America and Caribbean Region. http://www.bicusa.org/en/Document.101982.aspx. Accessed October 2011

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Britaldo Soares-Filho
    • 1
  • Rafaella Silvestrini
    • 1
  • Daniel Nepstad
    • 2
  • Paulo Brando
    • 2
  • Hermann Rodrigues
    • 1
  • Ane Alencar
    • 2
  • Michael Coe
    • 3
  • Charton Locks
    • 4
  • Letícia Lima
    • 1
  • Letícia Hissa
    • 1
  • Claudia Stickler
    • 2
  1. 1.Centro de Sensoriamento RemotoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Instituto de Pesquisa Ambiental da Amazônia − IPAMBelémBrazil
  3. 3.The Woods Hole Research CenterFalmouthUSA
  4. 4.Aliança da TerraGoiâniaBrazil

Personalised recommendations