Landscape Ecology

, Volume 27, Issue 4, pp 557–569 | Cite as

Integrating graph-based connectivity metrics into species distribution models

  • Jean-Christophe FoltêteEmail author
  • Céline Clauzel
  • Gilles Vuidel
  • Pierline Tournant
Research Article


Species distribution models (SDMs) are commonly used in ecology to map the probability of species occurrence on the basis of predictive factors describing the physical environment. We propose an improvement on SDMs by using graph methods to quantify landscape connectivity. After (1) mapping the habitat suitable for a given species, this approach consists in (2) building a landscape graph, (3) computing patch-based connectivity metrics, (4) extrapolating the values of those metrics to any point of space, and (5) integrating those connectivity metrics into a predictive model of presence. For a given species, this method can be used to interpret the significance of the metrics in the models in terms of population structure. The method is illustrated here by the construction of an SDM for the European tree frog in the region of Franche-Comté (France). The results show that the connectivity metrics improve the explanatory power of the SDM and emphasize the important role of the habitat network.


Graph theory Fragmented habitat Metapopulation Landscape connectivity Landscape metric Predictive model 



The authors thank Timothy Keitt and two anonymous reviewers for their valuable comments. This research is funded by the French Ministry of Ecology, Energy, Sustainable Development and the Sea (ITTECOP program) as part of the Graphab project managed by the USR 3124 MSHE Ledoux. Computations were performed on the supercomputer facilities of the “Mésocentre de calcul de FrancheComté”. We thank Raanan Barzel and Christopher Sutcliffe for reviewing the English manuscript.


  1. Armstrong DP (2005) Integrating the metapopulation and habitat paradigms for understanding broad-scale declines of species. Conserv Biol 19(5):1402–1410CrossRefGoogle Scholar
  2. Arthur SM, Manly BFJ, McDonald LL, Garner GW (1996) Assessing habitat selection when availability changes. Ecology 77:215–227CrossRefGoogle Scholar
  3. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118CrossRefGoogle Scholar
  4. Bodin O (2009) Prioritizing habitat patches for conservation in fragmented landscapes/townscapes using network-based models and analyses. In: Brebbia CA, Neophytou M, Beriatos E, Ioannou I, Kungolos AG (eds) Sustainable development and planning. Wit Press, Southampton, pp 109–118Google Scholar
  5. Bodin O, Saura S (2010) Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol Model 221:2393–2405CrossRefGoogle Scholar
  6. Borgatti SP (2005) Centrality and network flow. Soc Netw 27:55–71CrossRefGoogle Scholar
  7. Borgula A (1993) Causes of the decline in Hyla arborea. In: Stumpel A, Tester U (eds) Ecology and conservation of the European tree frog, 1st international workshop on Hyla arborea, Postdam, February 1992, Schweizerischer Bund für Naturschutz, Basel, pp 71–80Google Scholar
  8. Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manag 59:265–278CrossRefGoogle Scholar
  9. Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2(10):529–536CrossRefGoogle Scholar
  10. Carlson A, Edenhamn P (2000) Extinction dynamics and the regional persistence of a tree frog metapopulation. Proc R Soc Lond B 267:1311–1313CrossRefGoogle Scholar
  11. Dale MRT, Fortin MJ (2010) From graphs to spatial graphs. Annu Rev Ecol Evol Syst 41:21–38CrossRefGoogle Scholar
  12. Estrada E, Bodin O (2008) Using network centrality measures to manage landscape connectivity. Ecol Appl 18:1810–1825PubMedCrossRefGoogle Scholar
  13. Fahrig L, Grez AA (1996) Population spatial structure, human-caused landscape changes and species survival. Rev Chil Hist Nat 69(1):5–13Google Scholar
  14. Fog K (1993) Migration in the tree frog Hyla arborea. In: Stumpel A, Tester U (eds) Ecology and conservation of the European tree frog. 1st international workshop on Hyla arborea, Potsdam, February 1992, Schweizerischer Bund für Naturschutz, Basel, pp 55–63 Google Scholar
  15. Franklin J (2009) Mapping species distributions. Cambridge University Press, CambridgeGoogle Scholar
  16. Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144:44–55CrossRefGoogle Scholar
  17. Guisan A, Thuillier W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  18. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  19. Gustafson EJ, Parker GR (1994) Using an index of habitat patch proximity for landscape design. Landsc Urban Plan 29:117–130CrossRefGoogle Scholar
  20. Hanski I, Ovaslaken O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758PubMedCrossRefGoogle Scholar
  21. Hirzel AH, Arlettaz R (2003) Modelling habitat suitability for complex species distributions by environmental-distance geometric mean. Environ Manag 32(5):614–623CrossRefGoogle Scholar
  22. Hirzel AH, Le Lay G (2008) Habitat suitability modelling and niche theory. J Appl Ecol 45:1372–1381CrossRefGoogle Scholar
  23. Hjermann DØ (2000) Analyzing habitat selection in animals without well-defined home ranges. Ecology 81:1462–1468CrossRefGoogle Scholar
  24. Kindlmann P, Burel F (2008) Connectivity measures: a review. Landscape Ecol 23:879–890Google Scholar
  25. Matthiopoulos J (2003) The use of space by animals as a function of accessibility and preference. Ecol Model 159:239–268CrossRefGoogle Scholar
  26. Minor ES, Urban DL (2007) Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol Appl 17:1771–1782PubMedCrossRefGoogle Scholar
  27. Minor SM, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22:297–307PubMedCrossRefGoogle Scholar
  28. Moilanen A (2011) On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J Appl Ecol. doi: 10.1111/j.1365-2664.2011.02062.x Google Scholar
  29. Pellet J, Hoehn S, Perrin N (2004) Multiscale determinants of tree frog (Hyla arborea L.) calling ponds in western Switzerland. Biodivers Conserv 13:2227–2235CrossRefGoogle Scholar
  30. Pinston H (2000) Amphibiens et Reptiles de Franche-Comté. Atlas commenté de Répartition. Conseil Régional de Franche-Comté, BesançonGoogle Scholar
  31. Pulliam HR (1988) Sources, sinks and, population regulation. Am Nat 132:652–661CrossRefGoogle Scholar
  32. Richard Y, Armstrong DP (2010) The importance of integrating landscape ecology in habitat models: isolation-driven occurrence of north island robins in a fragmented landscape. Landscape Ecol 25:1363–1374CrossRefGoogle Scholar
  33. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103CrossRefGoogle Scholar
  34. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  35. Urban DL, Keitt TH (2001) Landscape connectivity: a graph theoretic approach. Ecology 82:1205–1218CrossRefGoogle Scholar
  36. Urban DL, Minor ES, Treml EA, Schick RS (2009) Graph models of land mosaics. Ecol Lett 12:260–273PubMedCrossRefGoogle Scholar
  37. Vos C, Stumpel AHP (1995) Comparison of habitat-isolation parameters in relation to fragmented distribution patterns in the tree frog (Hyla arborea). Landscape Ecol 11:203–214CrossRefGoogle Scholar
  38. Wright KA (1943) Isolation by distance. Genetics 28:114–138PubMedGoogle Scholar
  39. Zetterberg A, Mörtberg UM, Balfors B (2010) Making graph theory operational for landscape ecological assessments, planning, and design. Landsc Urban Plan 95:181–191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jean-Christophe Foltête
    • 1
    Email author
  • Céline Clauzel
    • 1
  • Gilles Vuidel
    • 1
  • Pierline Tournant
    • 1
    • 2
  1. 1.ThéMA UMR 6049 CNRS/University of Franche-ComtéBesanconFrance
  2. 2.Chrono-Environnement UMR 6249 CNRS/University of Franche-ComtéBesanconFrance

Personalised recommendations