Landscape Ecology

, Volume 26, Issue 5, pp 673–682 | Cite as

The pond network: can structural connectivity reflect on (amphibian) biodiversity patterns?

  • Raquel RibeiroEmail author
  • Miguel A. Carretero
  • Neftalí Sillero
  • Gonzalo Alarcos
  • Manuel Ortiz-Santaliestra
  • Miguel Lizana
  • Gustavo A. Llorente
Research Article


Landscape connectivity is a very recurrent theme in landscape ecology as it is considered pivotal for the long term conservation of any organism’s populations. Nevertheless, this complex concept is still surrounded by uncertainty and confusion, largely due to the separation between structural and functional connectivity. Amphibians are the most threatened vertebrates around the globe, in Europe mostly due to habitat alteration, and to their particular life cycle. Pond breeding amphibians are considered to be organised in metapopulations, enhancing the importance of landscape connectivity in this group of animals. We sampled the amphibian species present in two pond groups in Central Western Spain. We applied the graph theory framework to these two pond networks in order to determine the importance of each pond for the entire network connectivity. We related the pond importance for connectivity with the species richness present in each pond. We tested if connectivity (partially) determined the presence of the amphibian species sampled using logistic regression. The results show that the structural connectivity of the pond network impacts on the amphibian species richness pattern and that the importance of the pond for the connectivity of the network is an important factor for the presence of some species. Our results, hence, attest the importance of (structural) landscape connectivity determining the pattern of amphibian (functional) colonization in discrete ponds.


Functional connectivity Graph theory Pond-breeding amphibians Species richness Structural connectivity 



R. Ribeiro is financed by a PhD grant (SFRH/BD/31046/2006) from the Foundation for Science and Technology Portugal (FCT). N. Sillero is supported by post-doctoral positions (SFRH/BPD/26666/2006) also from FCT. Field work was financed by Consejería de Medio Ambiente de Zamora. We would like to thank Arie van der Meijden for final language editing and the constructive comments from two anonymous referees on the manuscript.


  1. Alarcos G, Ortiz-Santaliestra ME, Lizana M, Aragón A, Fernández-Benéitez MJ (2003) La colonización de medios acuáticos por anfibios como herramienta para su conservación: el ejemplo de Arribes del Duero. Munibe 16:114–127Google Scholar
  2. Arens P, van der Sluis T, van’t Westende W, Vosman B, Vos C, Smulders M (2007) Genetic population differentiation and connectivity among fragmented moor frog (Rana arvalis) populations in The Netherlands. Landscape Ecol 22:1489–1500CrossRefGoogle Scholar
  3. Bailey D, Schmidt-Entling MH, Eberhart P, Herrmann JD, Hofer G, Kormann U, Herzog F (2010) Effects of habitat amount and isolation on biodiversity in fragmented traditional orchards. J Appl Ecol 47:1003–1013Google Scholar
  4. Baguette M (2003) Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. Ecography 26:153–160Google Scholar
  5. Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI (2007) Habitat split and the global decline of amphibians. Science 318:1775–1777PubMedCrossRefGoogle Scholar
  6. Blaustein AR, Wake DB, Sousa WP (1994) Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv Biol 8:60–71CrossRefGoogle Scholar
  7. Bodin Ö, Norberg J (2007) A network approach for analyzing spatially structured populations in fragmented landscape. Landscape Ecol 22:31–44CrossRefGoogle Scholar
  8. Bowne DR, Bowers MA (2004) Interpatch movements in spatially structured populations: a literature review. Landscape Ecol 19:1–20CrossRefGoogle Scholar
  9. Broquet T, Ray N, Petit E, Fryxell J, Burel F (2006) Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecol 21:877–889CrossRefGoogle Scholar
  10. Cantwell MD, Forman RTT (1993) Landscape graphs: ecological modeling with graph theory to detect configurations common to diverse landscapes. Landscape Ecol 8:239–255CrossRefGoogle Scholar
  11. Compton BW, McGarigal K, Cushman SA, Gamble LR (2007) A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol 21:788–799PubMedCrossRefGoogle Scholar
  12. Crooks KR, Sanjayan MA (2006) Connectivity conservation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. Cunningham JM, Calhoun AJK, Glanz WE (2009) Pond-breeding amphibian species richness and habitat selection in a beaver-modified landscape. J Wildl Manag 71:2517–2526CrossRefGoogle Scholar
  14. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240CrossRefGoogle Scholar
  15. Gross J, Yellen J (2006) Graph theory and its applications. CRC Press, Boca RatonGoogle Scholar
  16. Harary E (1969) Graph theory. Addison-Wesley, Reading USA, Massachusetts.Google Scholar
  17. Jordán F, Magura T, Tóthmérész B, Vasas V, Ködöböcz V (2007) Carabids (Coleoptera: Carabidae) in a forest patchwork: a connectivity analysis of the Bereg plain landscape graph. Landscape Ecol 22:1527–1539CrossRefGoogle Scholar
  18. Knutson MG, Richardson WB, Reineke DM et al (2004) Agricultural ponds support amphibian populations. Ecol Appl 14:669–684CrossRefGoogle Scholar
  19. Kovar R, Brabec M, Vita R, Bocek R (2009) Spring migration distances of some Central European amphibian species. Amphibia-Reptilia 30:367–378CrossRefGoogle Scholar
  20. Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845CrossRefGoogle Scholar
  21. Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22:297–307PubMedCrossRefGoogle Scholar
  22. Minor ES, Tessel SM, Engelhardt KAM, Lookingbill TR (2009) The role of landscape connectivity in assembling exotic plant communities: a network analysis. Ecology 90:1802–1809PubMedCrossRefGoogle Scholar
  23. Miracle MR, Oertli B, Céréghino R, Hull A (2010) Preface: conservation of european ponds-current knowledge and future needs. Limnetica 29(1):1–8Google Scholar
  24. Neville H, Dunham J, Peacock M (2006) Assessing connectivity in salmonid fishes with DNA microsatellite markers. In: Crooks KR, Sanjayan MA (eds) Connectivity conservation. Cambridge University Press, CambridgeGoogle Scholar
  25. Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landscape Ecol 21:959–967CrossRefGoogle Scholar
  26. Peinado LM, Rivas-Marlinez S (1987) La Vegetación en España. Universidad de Alcalá de Henares, MadridGoogle Scholar
  27. Pleguezuelos JM, Márquez R, Lizana M (2002) Atlas y libro rojo de los anfibios y reptiles de españa. Dirección General de la Conservación de la Naturaleza-AHE, MadridGoogle Scholar
  28. Prevedello J, Vieira M (2009) Does the type of matrix matter? A quantitative review of the evidence. Biodiversity ConservGoogle Scholar
  29. Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20:345–353PubMedCrossRefGoogle Scholar
  30. Risser PG, Karr JR, Forman RTT (1984) Landscape ecology: directions and approaches. Natural History Survey, Champaign, Illinois Special Publ. 2Google Scholar
  31. Russell AP, Bauer AM, Johnson MK (2005) Migration in amphibians and reptiles: an overview of patterns and orientation mechanisms in relation to life history strategies. In: Elewa AMT (ed) Migration of organisms: climate, geography, ecology. Springer, Berlin, pp 151–203Google Scholar
  32. Saura S, Torné J (2009) Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24:135–139CrossRefGoogle Scholar
  33. Sillero N, Celaya L, Martín-Alfageme S (2005) Using GIS to make an atlas: a proposal to collect, store, map and analyse chorological data for herpetofauna. Revista Española De Herpetologia 19:87–101Google Scholar
  34. Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128CrossRefGoogle Scholar
  35. Stevens V, Polus E, Wesselingh R, Schtickzelle N, Baguette M (2004) Quantifying functional connectivity: experimental evidence for patch-specific resistance in the Natterjack toad (Bufo calamita). Landscape Ecol 19:829–842Google Scholar
  36. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786PubMedCrossRefGoogle Scholar
  37. Sutcliffe OL, Thomas CD (1996) Open corridors appear to facilitate dispersal by ringlet butterflies (Aphantopus hyperantus) between woodland clearings. Conserv Biol 10:1359–1365Google Scholar
  38. Taylor P, Fahrig L, With K (2006) Landscape connectivity: a return to basics. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, CambridgeGoogle Scholar
  39. Temple HJ, Cox NA (2009) European red list of amphibians. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  40. Tischendorf L, Fahrig L (2000) How should we measure landscape connectivity? Landscape Ecol 15:633–641CrossRefGoogle Scholar
  41. Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218CrossRefGoogle Scholar
  42. Vasas V, Magura T, Jordán F, Tóthmérész B (2009) Graph theory in action: evaluating planned highway tracks based on connectivity measures. Landscape Ecol 24:581–586CrossRefGoogle Scholar
  43. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? a view from the world of amphibians. PNAS 105:11466–11473PubMedCrossRefGoogle Scholar
  44. Walker R, Novaro A, Branch L (2007) Functional connectivity defined through cost-distance and genetic analyses: a case study for the rock-dwelling mountain vizcacha (Lagidium viscacia) in Patagonia, Argentina. Landscape Ecol 22:1303–1314Google Scholar
  45. Watts K, Eycott A, Handley P, Ray D, Humphrey J, Quine C (2010) Targeting and evaluating biodiversity conservation action within fragmented landscapes: an approach based on generic focal species and least-cost networks. Landscape Ecol 25:1305–1318Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Raquel Ribeiro
    • 1
    • 2
    Email author
  • Miguel A. Carretero
    • 2
  • Neftalí Sillero
    • 3
  • Gonzalo Alarcos
    • 4
  • Manuel Ortiz-Santaliestra
    • 4
  • Miguel Lizana
    • 4
  • Gustavo A. Llorente
    • 1
  1. 1.Department of Animal Biology (Vertebrates), Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  2. 2.CIBIO-UP–Research Center in Biodiversity and Genetic ResourcesUniversity of PortoVairãoPortugal
  3. 3.Department of Applied MathematicsResearch Center in Geo-Spatial Sciences University of PortoPortoPortugal
  4. 4.Department of Animal Biology and EcologyUniversity of SalamancaSalamancaSpain

Personalised recommendations