Advertisement

Landscape Ecology

, Volume 26, Issue 4, pp 473–486 | Cite as

Multi-scale effects of landscape complexity and crop management on pollen beetle parasitism rate

  • Adrien RuschEmail author
  • Muriel Valantin-Morison
  • Jean-Pierre Sarthou
  • Jean Roger-Estrade
Research Article

Abstract

Improving our understanding about how natural enemies respond to semi-natural habitats and crop management scattered in the landscape may contribute to the development of ecologically based pest management strategies maximising biological control services. We investigated how soil tillage and semi-natural habitats influenced the parasitism rates of pollen beetle (Meligethes aeneus F.) larvae at 8 different spatial scales (from 250 to 2000 m radius circular sectors) in 42 oilseed rape (OSR) fields. We used multimodel inference approaches to identify and rank the influence of soil tillage and semi-natural habitats on parasitism rates, and to quantify the importance of each scale. Parasitism rates were due to three univoltine parasitoid species (Tersilochus heterocerus, Phradis morionellus and P. interstitialis) and varied from 0 to 98%. We found that both fine and large scales contributed to explain significantly parasitism rates, indicating that biological control of pollen beetle is a multi-scale process. At the 250 m scale, parasitism rates of T. heterocerus were positively related to the proportion of semi-natural habitats and the proximity to previous year OSR fields. At large scales (1500 to 2000 m), parasitism rates of T. heterocerus were positively related to semi-natural habitats and negatively related to the proportion of previous year OSR fields with conventional soil tillage. Parasitism rates of Phradis spp. were only positively related to the proportion of semi-natural habitats at the 1250 and 1500 m scales. These multi-scale effects are discussed in relation to the influence of semi-natural habitats and soil tillage on parasitoid populations and their movement behaviours within the landscape.

Keywords

Meligethes aeneus Biological control Parasitoid Spatial scale Landscape Pest management Multimodel inference Movement behaviour Soil tillage 

Notes

Acknowledgments

We would like to thank the participating farmers for their interest in the project, A. Butier, G. Grandeau, C. Robert, D. Siou and G. Lajarrige for their technical assistance, and A. Gauffreteau and D. Makowski for statistical advice. We thank two anonymous reviewers and Oliver Schweiger for their valuable comments on an earlier draft of the manuscript. We also thank Christer Nilsson for his precious help and knowledge about parasitoids biology and ecology and Donald White for helpful editorial advice in English.

Supplementary material

10980_2011_9573_MOESM1_ESM.doc (126 kb)
Supplementary material 1 (DOC 126 kb)

References

  1. Altieri MA, Nicholls CI (2003) Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72(2):203–211CrossRefGoogle Scholar
  2. Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landscape Ecol 22(8):1117–1129CrossRefGoogle Scholar
  3. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B Biol Sci 273:1715–1727CrossRefGoogle Scholar
  4. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  5. Clough Y, Kruess A, Tscharntke T (2007) Local and landscape factors in differently managed arable fields affect the insect herbivore community of a non-crop plant species. J Appl Ecol 44:22–28CrossRefGoogle Scholar
  6. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill R, Paruelo J, Raskin R, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  7. Drapela T, Moser D, Zaller JG, Frank T (2008) Spider assemblages in winter oilseed rape affected by landscape and site factors. Ecography 31:254–262CrossRefGoogle Scholar
  8. Eilers EJ, Klein AM (2009) Landscape context and management effects on an important insect pest and its natural enemies in almond. Biol Control 51(3):388–394CrossRefGoogle Scholar
  9. Gurr GM, Wratten SD, Barbosa P (2000) Success in conservation biological control of arthropods. In: Gurr GM, Wratten SD (eds) Biological control: measures of success. Kluwer Academic Publisher, Dordrecht, pp 105–132Google Scholar
  10. Gurr GM, Wratten SD, Luna JM (2003) Multi-function agricultural biodiversity: pest management and other benefits. Basic Appl Ecol 4:107–116CrossRefGoogle Scholar
  11. Gustafson EJ, Parker GR (1992) Relationships between landcover proportion and indexes of landscape spatial pattern. Landscape Ecol 7(2):101–110CrossRefGoogle Scholar
  12. Hawkes C (2009) Linking movement behaviour, dispersal and population processes: is individual variation a key? J Anim Ecol 78(5):894–906PubMedCrossRefGoogle Scholar
  13. Heinz SK, Strand E (2006) Adaptive patch searching strategies in fragmented landscapes. Evol Ecol 20(2):113–130CrossRefGoogle Scholar
  14. Hendrickx F, Maelfait JP, van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Dieko¨tter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351CrossRefGoogle Scholar
  15. Jervis MA, Kidd NAC, Fitton MG, Huddleston T, Dawah HA (1993) Flower-visiting by hymenopteran parasitoids. J Nat Hist 27(1):67–105CrossRefGoogle Scholar
  16. Jönsson M, Lindkvist A, Anderson P (2005) Behavioural responses in three ichneumonid pollen beetle parasitoids to volatiles emitted from different phenological stages of oilseed rape. Entomol Exp Appl 115(3):363–369CrossRefGoogle Scholar
  17. Jourdheuil P (1960) Influence de quelques facteurs écologiques sur les fluctuations de population d’une biocénose parasitaire. Etude relative à quelques Hyménoptères parasites de divers Coléoptères inféodés aux Crucifères. Ann Epiphyt 11:445–660Google Scholar
  18. Kleijn D, van Langevelde F (2006) Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic Appl Ecol 7(3):201–214CrossRefGoogle Scholar
  19. Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264(5165):1581–1584PubMedCrossRefGoogle Scholar
  20. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201PubMedCrossRefGoogle Scholar
  21. Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56(4):311–323CrossRefGoogle Scholar
  22. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277(5325):504–509PubMedCrossRefGoogle Scholar
  23. Nilsson C (2010) Impact of soil tillage on parasitoids of oilseed rape pests. In: Williams IH (ed) Biocontrol-based integrated management of oilseed rape pests. Springer, Berlin, pp 305–311CrossRefGoogle Scholar
  24. Osborne P (1960) Observation on the natural enemies of Meligethes aeneus F. and M. viridescens (Coleoptera: Nitidulidae). Parasitology 50:91–110PubMedCrossRefGoogle Scholar
  25. Östman O, Ekbom B, Bengtsson J (2001) Landscape heterogeneity and farming practice influence biological control. Basic Appl Ecol 2(4):365–371CrossRefGoogle Scholar
  26. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. ISBN 3-900051-07-0
  27. Richardson DM (2008) Summary of findings from a participant country pollen beetle questionnaire. Bull OEPP 38:68–72Google Scholar
  28. Rundlof M, Bengtsson J, Smith HG (2008) Local and landscape effects of organic farming on butterfly species richness and abundance. J Appl Ecol 45(3):813–820CrossRefGoogle Scholar
  29. Smith AC, Koper N, Francis CM, Fahrig L (2009) Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecol 24(10):1271–1285CrossRefGoogle Scholar
  30. Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83(5):1421–1432CrossRefGoogle Scholar
  31. Stoate C, Boatman ND, Borralho RJ, Carvalho CR, GRd Snoo, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63(4):337–365CrossRefGoogle Scholar
  32. Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101:18–25CrossRefGoogle Scholar
  33. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  34. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309CrossRefGoogle Scholar
  35. Van Dyck H, Baguette M (2005) Dispersal behaviour in fragmented landscapes: routine or special movements? Basic Appl Ecol 6(6):535–545CrossRefGoogle Scholar
  36. Wäckers FL, van Rijn PCJ, Bruin J (2005) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. Williams IH, Frearson DJT, Barari H, McCartney A (2007) First field evidence that parasitoids use upwind anemotaxis for host-habitat location. Entomol Exp Appl 123(3):299–307CrossRefGoogle Scholar
  38. Zaller JG, Moser D, Drapela T, Schmöger C, Frank T (2009) Parasitism of stem weevils and pollen beetles in winter oilseed rape is differentially affected by crop management and landscape characteristics. Biocontrol 54(4):505–514CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Adrien Rusch
    • 1
    Email author
  • Muriel Valantin-Morison
    • 1
  • Jean-Pierre Sarthou
    • 2
  • Jean Roger-Estrade
    • 3
  1. 1.INRA (French National Institute for Agricultural Research), UMR211 Agronomie, INRA/AgroParisTechThiverval-GrignonFrance
  2. 2.University of Toulouse, INPT-ENSAT, UMR 1201 DYNAFORCastanet TolosanFrance
  3. 3.AgroParisTech, UMR 211 Agronomie, INRA/AgroParisTechThiverval-GrignonFrance

Personalised recommendations