Landscape Ecology

, Volume 26, Issue 3, pp 397–410 | Cite as

The distribution of a threatened migratory bird species in a patchy landscape: a multi-scale analysis

  • Aafke M. SchipperEmail author
  • Kees Koffijberg
  • Marije van Weperen
  • Guido Atsma
  • Ad M. J. Ragas
  • A. Jan Hendriks
  • Rob S. E. W. Leuven
Research Article


Understanding the driving forces behind the distribution of threatened species is critical to set priorities for conservation measures and spatial planning. We examined the distribution of a globally threatened bird, the corncrake (Crex crex), in the lowland floodplains of the Rhine River, which provide an important breeding habitat for the species. We related corncrake distribution to landscape characteristics (area, shape, texture, diversity) at three spatial scales: distinct floodplain units (“floodplain scale”), circular zones around individual observations (“home range scale”), and individual patches (“patch scale”) using logistic regression. Potential intrinsic spatial patterns in the corncrake data were accounted for by including geographic coordinates and an autocovariate as predictors in the regression analysis. The autocovariate was the most important predictor of corncrake occurrence, probably reflecting the strong conspecific attraction that is characteristic of the species. Significant landscape predictors mainly pertained to area characteristics at the patch scale and the home range scale; the probability of corncrake occurrence increased with potential habitat area, patch area, and nature reserve area. The median potential habitat patch size associated with corncrake occurrence was 11.3 ha; 90% of the corncrake records were associated with patches at least 2.2 ha in size. These results indicate that the corncrake is an area-sensitive species, possibly governed by the males’ tendency to reside near other males while maintaining distinct territories. Our results imply that corncrake habitat conservation schemes should focus on the preservation of sufficient potential habitat area and that existing management measures, like delayed mowing, should be implemented in relatively large, preferably contiguous areas.


Autologistic regression Conservation ecology Corncrake (Crex crexGIS Landscape metrics Lowland Rhine River floodplains 



We would like to express our gratitude to all of the volunteer bird watchers who participated in the corncrake surveys and to Jan Schoppers for coordinating the national censuses. This study would not have been possible without their efforts. Chris van Turnhout assisted us in using the GenStat software. We thank three anonymous reviewers and the associate editor for their valuable comments and suggestions to improve the paper. This research project was funded by The Netherlands Organisation for Scientific Research (NWO) under the LOICZ programme (project 014.27.007).

Supplementary material

10980_2010_9566_MOESM1_ESM.doc (102 kb)
Supplementary material 1 (DOC 102 kb)


  1. Augustin NH, Mugglestone MA, Buckland ST (1996) An autologistic model for the spatial distribution of wildlife. J Appl Ecol 33:339–347CrossRefGoogle Scholar
  2. Baillie SR, Sutherland WJ, Freeman SN, Gregory RD, Paradis E (2000) Consequences of large-scale processes for the conservation of bird populations. J Appl Ecol 37:88–102CrossRefGoogle Scholar
  3. Benassi G, Battisti C, Luiselli L, Boitani L (2009) Area-sensitivity of three reed bed bird species breeding in Mediterranean marshland fragments. Wetl Ecol Manag 17:555–564CrossRefGoogle Scholar
  4. Berg Å, Gustafson T (2007) Meadow management and occurrence of corncrake Crex crex. Agr Ecosyst Environ 120:139–144CrossRefGoogle Scholar
  5. Betts MG, Diamond AW, Forbes GJ, Villard MA, Gunn JS (2006) The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence. Ecol Model 191:197–224CrossRefGoogle Scholar
  6. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  7. Boscolo D, Metzger JP (2009) Is bird incidence in Atlantic forest fragments influenced by landscape patterns at multiple scales? Landscape Ecol 24:907–918CrossRefGoogle Scholar
  8. Braaksma S (1962) Voorkomen en levensgewoonten van de Kwartelkoning (Crex crex L.). Limosa 35:230–259Google Scholar
  9. Bring J (1994) How to standardize regression coefficients. Am Stat 48:209–213CrossRefGoogle Scholar
  10. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  11. Cerezo A, Perelman S, Robbins CS (2010) Landscape-level impact of tropical forest loss and fragmentation on bird occurrence in eastern Guatemala. Ecol Model 221:512–526CrossRefGoogle Scholar
  12. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46CrossRefGoogle Scholar
  13. Coreau A, Martin JL (2007) Multi-scale study of bird species distribution and of their response to vegetation change: a Mediterranean example. Landscape Ecol 22:747–764CrossRefGoogle Scholar
  14. Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628CrossRefGoogle Scholar
  15. Geerling GW, Vreeken-Buijs MJ, Jesse P, Ragas AMJ, Smits AJM (2009) Mapping river floodplain ecotopes by segmentation of spectral (CASI) and structural (LiDAR) remote sensing data. River Res Appl 25:795–813CrossRefGoogle Scholar
  16. Graham CH, Blake JG (2001) Influence of patch- and landscape-level factors on bird assemblages in a fragmented tropical landscape. Ecol Appl 11:1709–1721CrossRefGoogle Scholar
  17. Grand J, Cushman SA (2003) A multi-scale analysis of species-environment relationships: breeding birds in a pitch pine-scrub oak (Pinus rigida-Quercus ilicifolia) community. Biol Conserv 112:307–317CrossRefGoogle Scholar
  18. Green RE (1996) Factors affecting the population density of the corncrake Crex crex in Britain and Ireland. J Appl Ecol 33:237–248CrossRefGoogle Scholar
  19. Green RE, Stowe TJ (1993) The decline of the corncrake Crex crex in Britain and Ireland in relation to habitat change. J Appl Ecol 30:689–695CrossRefGoogle Scholar
  20. Green RE, Rocamora G, Schäffer N (1997a) Populations, ecology and threats to the Corncrake Crex crex in Europe. Vogelwelt 118:117–134Google Scholar
  21. Green RE, Tyler GA, Stowe TJ, Newton AV (1997b) A simulation model of the effect of mowing of agricultural grassland on the breeding success of the corncrake (Crex crex). J Zool 243:81–115CrossRefGoogle Scholar
  22. Gregory RD, Baillie SR (1998) Large-scale habitat use of some declining British birds. J Appl Ecol 35:785–799CrossRefGoogle Scholar
  23. Herrando S, Brotons L (2002) Forest bird diversity in Mediterranean areas affected by wildfires: a multi-scale approach. Ecography 25:161–172CrossRefGoogle Scholar
  24. Houkes G (2008) Ecotopenkartering Rijntakken-Oost 2005. Biologische monitoring zoete rijkswateren. AGI-2007-GSMH-025/RIZA-report 2007.031. Directorate General for Public Works and Water Management (Rijkswaterstaat)/Institute for Inland Water Management and Waste Water Treatment (RIZA), Delft/LelystadGoogle Scholar
  25. IUCN (2010) IUCN red list of threatened species. Version 2010.2. Downloaded on 19 July 2010
  26. Jaberg C, Guisan A (2001) Modelling the distribution of bats in relation to landscape structure in a temperate mountain environment. J Appl Ecol 38:1169–1181CrossRefGoogle Scholar
  27. Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71CrossRefGoogle Scholar
  28. Keišs O (2005) Impact of changes in agricultural land use on the Corncrake Crex crex population in Latvia. Acta Univ Latv 691:93–109Google Scholar
  29. Keitt TH, Bjornstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when modeling organism-environment interactions. Ecography 25:616–625CrossRefGoogle Scholar
  30. Koffijberg K, Nienhuis J (2003) Kwartelkoningen in het Oldambt: een onderzoek naar de populatiedynamiek, habitatkeuze en mogelijkheden voor beschermingsmaatregelen. SOVON report 2003/04. SOVON Dutch Centre for Field Ornithology/Province of Groningen, Beek-Ubbergen/GroningenGoogle Scholar
  31. Koffijberg K, Schoppers J (2009) De Kwartelkoning in Nederland in 2001–2008: evaluatie van het beschermingsplan Kwartelkoning en aanbevelingen voor toekomstig beheer. SOVON report 2009/02. SOVON Dutch Centre for Field Ornithology, Beek-UbbergenGoogle Scholar
  32. Koffijberg K, Van Dijk AJ (2001) Influx van Kwartelkoningen Crex crex in Nederland in 1998. Limosa 74:147–159Google Scholar
  33. Koffijberg K, Van Kleunen A, Majoor F (2007) Territorial behaviour and habitat use of Corncrakes Crex crex in the Netherlands revealed by radio-tracking. Limosa 80:167–171Google Scholar
  34. Koper N, Schmiegelow KA (2006) A multi-scaled analysis of avian response to habitat amount and fragmentation in the Canadian dry mixed-grass prairie. Landscape Ecol 21:1045–1059CrossRefGoogle Scholar
  35. Leuven RSEW, Poudevigne I, Teeuw RM (eds) (2002) Application of geographic information systems and remote sensing in river studies. Backhuys Publishers, LeidenGoogle Scholar
  36. Lichstein JW, Simons TR, Shriner SA, Franzreb KE (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72:445–463CrossRefGoogle Scholar
  37. López-López P, García-Ripollés C, Aguilar JM, García-López F, Verdejo J (2006) Modelling breeding habitat preferences of Bonelli’s eagle (Hieraaetus fasciatus) in relation to topography, disturbance, climate and land use at different spatial scales. J Ornithol 147:97–106CrossRefGoogle Scholar
  38. Martinez JA, Serrano D, Zuberogoitia I (2003) Predictive models of habitat preferences for the Eurasian eagle owl Bubo bubo: a multiscale approach. Ecography 26:21–28CrossRefGoogle Scholar
  39. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. University of Massachusetts, AmherstGoogle Scholar
  40. Ministry of Transport, Public Works and Water Management (2002) Uiterwaardindeling ‘Ruimte voor de Rivier’. Directorate General for Public Works and Water Management (Rijkswaterstaat), Region Oost-Nederland, ArnhemGoogle Scholar
  41. Ministry of Transport, Public Works and Water Management (2005) Ecotopenkartering Rijntakken-Oost 2005. Directorate General for Public Works and Water Management (Rijkswaterstaat), DelftGoogle Scholar
  42. Ormerod SJ, Watkinson AR (2000) Large-scale ecology and hydrology: an introductory perspective from the editors of the Journal of Applied Ecology. J Appl Ecol 37:1–5Google Scholar
  43. Ormerod SJ, Pienkowski MW, Watkinson AR (1999) Communicating the value of ecology. J Appl Ecol 36:847–855CrossRefGoogle Scholar
  44. Petrie M, Kempenaers B (1998) Extra-pair paternity in birds: explaining variation between species and populations. Trends Ecol Evol 13:52–58CrossRefPubMedGoogle Scholar
  45. Radford JQ, Bennett AF, Cheers GJ (2005) Landscape-level thresholds of habitat cover for woodland-dependent birds. Biol Conserv 124:317–337CrossRefGoogle Scholar
  46. Renfrew RB, Ribic CA (2008) Multi-scale models of grassland passerine abundance in a fragmented system in Wisconsin. Landscape Ecol 23:181–193CrossRefGoogle Scholar
  47. Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species distributions? J Appl Ecol 41:193–200CrossRefGoogle Scholar
  48. Sanchez-Zapata JA, Calvo JF (1999) Raptor distribution in relation to landscape composition in semi-arid Mediterranean habitats. J Appl Ecol 36:254–262CrossRefGoogle Scholar
  49. Schäffer N (1994) Methoden zum Nachweis von Bruten des Wachtelkönigs Crex crex. Vogelwelt 115:69–73Google Scholar
  50. Schäffer N (1995) Rufverhalten und Funktion des Rufens beim Wachtelkönig Crex crex. Vogelwelt 116:141–151Google Scholar
  51. Schäffer N (1999) Habitatwahl und Partnerschaftssystem von Tüpfelralle Porzana porzana und Wachtelkönig Crex crex. Ökologie der Vögel 21:1–267Google Scholar
  52. Schäffer N, Green RE (2001) The global status of the Corncrake. RSPB Conserv Rev 13:18–24Google Scholar
  53. Schäffer N, Münch S (1993) Untersuchungen zur Habitatwahl und Brutbiologie des Wachtelkönigs Crex crex im Murnauer Moos/Oberbayern. Vogelwelt 114:55–72Google Scholar
  54. Schipper AM, Wijnhoven S, Leuven RSEW, Ragas AMJ, Hendriks AJ (2008) Spatial distribution and internal metal concentrations of terrestrial arthropods in a moderately contaminated lowland floodplain along the Rhine River. Environ Pollut 151:17–26CrossRefPubMedGoogle Scholar
  55. Schippers P, Grashof-Bokdam CJ, Verboom J, Baveco JM, Jochem R, Meeuwsen HAM, Van Adrichem MHC (2009) Sacrificing patches for linear habitat elements enhances metapopulation performance of woodland birds in fragmented landscapes. Landscape Ecol 24:1123–1133CrossRefGoogle Scholar
  56. Skliba J, Fuchs R (2004) Male Corncrakes Crex crex extend their home ranges by visiting the territories of neighbouring males. Bird Study 51:113–118CrossRefGoogle Scholar
  57. Smith AC, Koper N, Francis CM, Fahrig L (2009) Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecol 24:1271–1285CrossRefGoogle Scholar
  58. Stowe TJ, Newton AV, Green RE, Mayes E (1993) The decline of the Corncrake Crex crex in Britain and Ireland in relation to habitat. J Appl Ecol 30:53–62CrossRefGoogle Scholar
  59. Suarez-Rubio M, Thomlinson JR (2009) Landscape and patch-level factors influence bird communities in an urbanized tropical island. Biol Conserv 142:1311–1321CrossRefGoogle Scholar
  60. Thonon I (2006) Deposition of sediment and associated heavy metals on floodplains. PhD thesis, Utrecht UniversityGoogle Scholar
  61. Tyler GA, Green RE (1996) The incidence of nocturnal song by male Corncrakes Crex crex is reduced during pairing. Bird Study 43:214–219CrossRefGoogle Scholar
  62. Uezu A, Metzger JP, Vielliard JME (2005) Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol Conserv 123:507–519CrossRefGoogle Scholar
  63. Umetsu F, Metzger JP, Pardini R (2008) Importance of estimating matrix quality for modeling species distribution in complex tropical landscapes: a test with Atlantic forest small mammals. Ecography 31:359–370CrossRefGoogle Scholar
  64. Van Turnhout CAM, Foppen RPB, Leuven RSEW, Siepel H, Esselink H (2007) Scale-dependent homogenization: changes in breeding bird diversity in the Netherlands over a 25-year period. Biol Conserv 134:505–516CrossRefGoogle Scholar
  65. Van Weperen M (2009) Habitat selection of the Corncrake (Crex crex) in floodplains along the Dutch Rhine River branches. MSc-thesis, Radboud University NijmegenGoogle Scholar
  66. Villard MA, Trzcinski MK, Merriam G (1999) Fragmentation effects on forest birds: relative influence of woodland cover and configuration on landscape occupancy. Conserv Biol 13:774–783CrossRefGoogle Scholar
  67. Virkkala R, Luoto M, Rainio K (2004) Effects of landscape composition on farmland and red-listed birds in boreal agricultural-forest mosaics. Ecography 27:273–284CrossRefGoogle Scholar
  68. VSNi (2009) GenStat, 12th edn. Hemel Hempstead, HertfordshireGoogle Scholar
  69. Watson JEM, Whittaker RJ, Dawson TP (2004) Avifaunal responses to habitat fragmentation in the threatened littoral forests of south-eastern Madagascar. J Biogeogr 31:1791–1807CrossRefGoogle Scholar
  70. Wettstein W, Szép T, Kéry M (2001) Habitat selection of Corncrakes (Crex crex L.) in Szatmár-Bereg (Hungary) and implications for further monitoring. Ornis Hung 11:9–18Google Scholar
  71. Wiens JA (1976) Population responses to patchy environments. Annu Rev Ecol Syst 7:81–120CrossRefGoogle Scholar
  72. Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Aafke M. Schipper
    • 1
    Email author
  • Kees Koffijberg
    • 2
  • Marije van Weperen
    • 1
  • Guido Atsma
    • 1
  • Ad M. J. Ragas
    • 1
  • A. Jan Hendriks
    • 1
  • Rob S. E. W. Leuven
    • 1
  1. 1.Institute for Water and Wetland Research, Department of Environmental ScienceRadboud University NijmegenNijmegenThe Netherlands
  2. 2.SOVON Dutch Centre for Field OrnithologyNijmegenThe Netherlands

Personalised recommendations