Landscape Ecology

, Volume 25, Issue 1, pp 79–93

Use of artificial landscapes to isolate controls on burn probability

  • Marc-André Parisien
  • Carol Miller
  • Alan A. Ager
  • Mark A. Finney
Research Article


Techniques for modeling burn probability (BP) combine the stochastic components of fire regimes (ignitions and weather) with sophisticated fire growth algorithms to produce high-resolution spatial estimates of the relative likelihood of burning. Despite the numerous investigations of fire patterns from either observed or simulated sources, the specific influence of environmental factors on BP patterns is not well understood. This study examined the relative effects of ignitions, fuels, and weather on mean BP and spatial patterns in BP (i.e., BP variability) using highly simplified artificial landscapes and wildfire simulation methods. Our results showed that a limited set of inputs yielded a wide range of responses in the mean and spatial patterning of BP. The input factors contributed unequally to mean BP and to BP variability: so-called top-down controls (weather) primarily influenced mean BP, whereas bottom-up influences (ignitions and fuels) were mainly responsible for the spatial patterns of BP. However, confounding effects and interactions among factors suggest that fully separating top-down and bottom-up controls may be impossible. Furthermore, interactions among input variables produced unanticipated but explainable BP patterns, hinting at complex topological dependencies among the main determinants of fire spread and the resulting BP. The results will improve our understanding of the spatial ecology of fire regimes and help in the interpretation of patterns of fire likelihood on real landscapes as part of future wildfire risk assessments.


Burn probability Burn-P3 simulation model Ignitions Fuels Fire weather 

Copyright information

© US Government 2009

Authors and Affiliations

  • Marc-André Parisien
    • 1
    • 2
  • Carol Miller
    • 3
  • Alan A. Ager
    • 4
  • Mark A. Finney
    • 5
  1. 1.Northern Forestry Centre, Canadian Forest ServiceNatural Resources CanadaEdmontonCanada
  2. 2.Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA
  3. 3.Aldo Leopold Wilderness Research Institute, Rocky Mountain Research StationUSDA Forest ServiceMissoulaUSA
  4. 4.Western Wildlands Environmental Threat Assessment Center, Pacific Northwest Research StationUSDA Forest ServicePrinevilleUSA
  5. 5.Missoula Fire Sciences Laboratory, Rocky Mountain Research StationUSDA Forest ServiceMissoulaUSA

Personalised recommendations