Landscape Ecology

, 24:1183 | Cite as

Dynamical coupling of multiscale land change models

  • Evaldinolia Moreira
  • Sérgio Costa
  • Ana Paula AguiarEmail author
  • Gilberto Câmara
  • Tiago Carneiro
Research Article


No single model or scale can fully capture the causes of land change. For a given region, land changes may have different impacts at different places. Limits and opportunities imposed by biophysical and socio-economic conditions, such as local policies and accessibility, may induce distinct land change trajectories. These local land change trajectories may, in turn, indirectly affect other places, as local actions interact with higher-level driving forces. Such intraregional interdependencies cannot be captured by studies at a single scale, calling for multiscale and multilocality studies. This paper proposes a software organization for building computational models that support dynamical linking of multiple scales. This structure couples different types of models, such as cell-space models with agent-based models. We show how results in multiscale models can flow both in bottom-up and top-down directions, thus allowing feedback from local actors to regional scales. The proposal is general and independent of specific software, and it is effective to model intraregional, bottom-up and top-down interactions in land change models. To show the model’s potential, we develop a case study that shows how a multiscale model for the Brazilian Amazonia can include feedbacks between local to regional scales.


Land change modelling Multiscale modelling Amazonia Deforestation models Scale feedbacks Dynamical model integration Agent-based modelling 



We thank the CLUE group at Wageningen University, The Netherlands, for providing the CLUE model source code and technical support for us to develop the regional model for Amazonia. This work is part of the GEOMA Network Project (, a multiinstitutional Brazilian Science and Technology Ministry effort to develop integrated environmental models to subsidise policy action at multiple decision levels in the Amazonia. Gilberto Camara’s work is partially funded by CNPq (grant PQ 550250/2005-0) and FAPESP (grant 04/11012-0). Evaldinolia Moreira’s work is partially funded by FAPEMA (Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão).


  1. Aguiar APD (2006) Modeling land use change in the Brazilian Amazon: exploring intra-regional heterogeneity. PhD thesis in remote sensing, INPE: Sao Jose dos CamposGoogle Scholar
  2. Aguiar A, Câmara G, Cartaxo R (2003) Modeling spatial relations by generalized proximity matrices. In: Casanova M (ed) Brazilian symposium in geoinformatics—GeoInfo 2003, Campos do Jordão, SP, BrazilGoogle Scholar
  3. Aguiar AP, Câmara G, Escada MI (2007) Spatial statistical analysis of land-use determinants in the Brazilian Amazon: exploring intra-regional heterogeneity. Ecol Modell 209:169–188CrossRefGoogle Scholar
  4. Becker BK (2005) Geopolítica da Amazônia (Amazonian Geopolitics). Estu Avançados (J Inst Advanced Stu University Sao Paulo) 19:71–86Google Scholar
  5. Briassoulis H (2000) Analysis of land use change: theoretical and modeling approaches. Regional Research Institute, West Virginia University, MorgantownGoogle Scholar
  6. Brooks F (1982) No silver bullet: essence and accidents of software engineering. IEEE Computer 20:10–19Google Scholar
  7. Brown DG, Robinson DT, An L et al (2008) Exurbia from the bottom-up: confronting empirical challenges to characterizing a complex system. Geoforum 39:805–818CrossRefGoogle Scholar
  8. Carneiro T (2006) Nested-CA: a foundation for multiscale modeling of land use and land change. PhD thesis in computer science, INPE, Sao Jose dos CamposGoogle Scholar
  9. Castella J-C, Verburg PH (2007) Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecol Modell 202:410–420CrossRefGoogle Scholar
  10. Escada MI, Vieira IC, Kampel S et al (2005) Processos de ocupação nas novas fronteiras da Amazônia: o interflúvio do Xingu/Iriri. (Occupation process in the new frontiers of the Amazon (the Xingu/Iriri region). Estu Avançados (J Inst Advanced Stu University Sao Paulo) 19:9–24Google Scholar
  11. Gibson CC, Ostrom E, Ahn TK (2000) The concept of scale and the human dimensions of global change: a survey. Ecol Econ 32:217–239CrossRefGoogle Scholar
  12. INPE (2008) Monitoramento da Floresta Amazônica Brasileira por Satélite (Monitoring the Brazilian Amazon Forest by Satellite). Available at Accessed in 29 July 2008, INPE, São José dos Campos, Brazil
  13. Lambin E (1997) Modeling and monitoring land-cover change processes in tropical regions. Prog Phys Geogr 21:375–393CrossRefGoogle Scholar
  14. Lambin EF, Geist HJ (2001) Global land-use and cover change: what have we learned so far? Glob Chang Newsl 46:27–31Google Scholar
  15. Lambin EF, Turner BLI, Geist HJ et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 4:261–269CrossRefGoogle Scholar
  16. Laurance W, Cochrane M, Bergen S et al (2001) The future of the Brazilian Amazon. Science 291:438–439CrossRefPubMedGoogle Scholar
  17. Li S, Liu Q, Afshari S (2006) An object-oriented hierarchical patch dynamics paradigm (HPDP) for modeling complex groundwater systems across multiple-scales. Environ Model Softw 21:744–749CrossRefGoogle Scholar
  18. Moran E, Ojima D, Buchmann N et al (2005) Global land project: science plan and implementation strategy. IGBP report no 53/IHDP report no 19. IGBP Secretariat, StockholmGoogle Scholar
  19. Moreira EG, Aguiar AP, Costa SS, Câmara G (2008) Spatial relations across scales in land change models. In X Brazilian symposium on geoinformations, GEOINFO 2008, Rio de Janeiro, RJ, BrasilGoogle Scholar
  20. Parker D, Berger T, Manson S, McConnel S (2002) Agent-based models of land-use/land-cover change. Report and review of an international workshop. lucc report series no 6. lucc project, Irvine, California, USAGoogle Scholar
  21. Parnas DL (1972) On the criteria to be used in decomposing systems into modules. Commun ACM 15:1053–1058CrossRefGoogle Scholar
  22. Pijanowskia BC, Brownb DG, Shellitoc BA, Manik GA (2002) Using neural networks and GIS to forecast land use changes: a land transformation model. Comput Environ Urban Syst 26:553–575CrossRefGoogle Scholar
  23. Pontius RG, Cornell J, Hall C (2001) Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica. Agric Ecosyst Environ 85:191–203CrossRefGoogle Scholar
  24. Soares-Filho B, Cerqueira G, Pennachin C (2002) DINAMICA–a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol Modell 154:217–235CrossRefGoogle Scholar
  25. Soares-Filho B, Nepstad D, Curran L et al (2006) Modeling conservation in the Amazon basin. Nature 440:520–523CrossRefPubMedGoogle Scholar
  26. Turner B, Skole D, Sanderson S et al (1995) Land-use and land-cover change (LUCC): science/research plan, HDP report no. 7. IGBP Secretariat, StockholmGoogle Scholar
  27. Veldkamp A, Fresco L (1996) CLUE: a conceptual model to study the conversion of land use and its effects. Ecol Modell 85:253–270CrossRefGoogle Scholar
  28. Veldkamp A, Lambin E (2001) Predicting land-use change. Agric Ecosyst Environ 85:1–6CrossRefGoogle Scholar
  29. Veldkamp A, Verburg P, Kok K et al (2001) The need for scale sensitive approached in spatially explicit land use change modeling. Environ Model Assess 6:111–121CrossRefGoogle Scholar
  30. Verburg PH (2006) Simulating feedbacks in land use and land cover change models. Landscape Ecol 21:1171–1183CrossRefGoogle Scholar
  31. Verburg P, Veldkamp A, Fresco LO (1999) Simulation of changes in the spatial pattern of land use in China. Appl Geogr 19:211–233CrossRefGoogle Scholar
  32. Verburg PH, Soepboer W, Veldkamp A et al (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manage 30:391–405CrossRefPubMedGoogle Scholar
  33. Verburg PH, Schot PP, Dijst MJ, Veldkamp A (2004) Land use change modelling: current practice and research priorities. GeoJournal 61:309–324CrossRefGoogle Scholar
  34. Verburg PH, Kok K, Pontius RG Jr, Veldkamp A (2006) Modeling Land-Use and Land-Cover Change. In: Lambin E, Geist H (eds) Land-use and land-cover change: local processes and global impacts. Springer, BerlinGoogle Scholar
  35. Verburg PH, Eickhout B, Meij Hv (2008) A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann Reg Sci 42:57–77CrossRefGoogle Scholar
  36. White R, Engelen G (2000) High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Comput Environ Urban Syst 24:383–400CrossRefGoogle Scholar
  37. White R, Engelen G, Uljee I (1997) The use of constrained cellular automata for high-resolution modelling of urban land use dynamics. Environ Plann B Plann Des 24:323–343CrossRefGoogle Scholar
  38. Wu J (1999) Hierarchy and scaling: extrapolating information along a scaling ladder. Can J Remote Sens 25:367–380Google Scholar
  39. Wu J, David J (2002) A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecol Modell 153:7–26CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Evaldinolia Moreira
    • 1
    • 2
  • Sérgio Costa
    • 1
  • Ana Paula Aguiar
    • 1
    Email author
  • Gilberto Câmara
    • 1
  • Tiago Carneiro
    • 3
  1. 1.Earth System Science Center (CST), Instituto Nacional de Pesquisas Espaciais (INPE)São José dos CamposBrazil
  2. 2.Departamento de InformáticaInstituto Federal de Educação, Ciência e Tecnologia do Maranhão (IFMA)Sao LuisBrazil
  3. 3.Earth System Simulation Laboratory, TerraLABFederal University of Ouro Preto (UFOP)Ouro PretoBrazil

Personalised recommendations