Landscape Ecology

, Volume 25, Issue 2, pp 185–199 | Cite as

An agent-based approach to model land-use change at a regional scale

  • Diego Valbuena
  • Peter H. Verburg
  • Arnold K. Bregt
  • Arend Ligtenberg
Research Article

Abstract

Land-use/cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. A common approach to analyse and simulate LUCC as the result of individual decisions is agent-based modelling (ABM). However, ABM is often applied to simulate processes at local scales, while its application in regional studies is limited. This paper describes first a conceptual framework for ABM to analyse and explore regional LUCC processes. Second, the conceptual framework is represented by combining different concepts including agent typologies, farm trajectories and probabilistic decision-making processes. Finally, the framework is illustrated through a case study in the Netherlands, where processes of farm cessation, farm expansion and farm diversification are shaping the structure of the landscape. The framework is a generic, straightforward approach to analyse and explore regional LUCC with an explicit link to empirical approaches for parameterization of ABM.

Keywords

Land-use/cover change Decision-making Agent-based modelling Rural regions 

References

  1. Aarts N, van Woerkum CCMJ (eds) (2000) Communication in nature management policy making. European Centre for Nature Conservation, TilburgGoogle Scholar
  2. Acosta-Michlik L, Espaldon V (2008) Assessing vulnerability of selected farming communities in the Philippines based on a behavioural model of agent’s adaptation to global environmental change. Glob Environ Change 18:554–563CrossRefGoogle Scholar
  3. Beratan KK (2007) A cognition-based view of decision processes in complex social–ecological systems. Ecol Soc 12(1):27Google Scholar
  4. Batty M, Torrens PM (2001) Modeling complexity: the limits to prediction. CASA, UCL, London, p 36Google Scholar
  5. Benenson I, Torrens PM (2004) Geosimulation: automata-based modeling of urban phenomena. Wiley, West SussexGoogle Scholar
  6. Berger T, Schreinemachers P (2006) Creating agents and landscapes for multiagent systems from random samples. Ecol Soc 11(2):19Google Scholar
  7. Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human systems. PNAS 99:7280–7287CrossRefPubMedGoogle Scholar
  8. Bousquet F, Le Page C (2004) Multi-agent simulations and ecosystem management: a review. Ecol Model 176:313–332CrossRefGoogle Scholar
  9. Bradshaw GA, Borchers JG (2000) Uncertainty as information: narrowing the science-policy gap. Conserv Ecol 4:7Google Scholar
  10. Brown DG, Page SE, Riolo R, Zellner M, Rand W (2005) Path dependence and the validation of agent-based spatial models of land use. Int J Geogr Inf Sci 19:153–174CrossRefGoogle Scholar
  11. Busck AG (2002) Farmers’ landscape decisions: relationships between farmers’ values and landscape practices. Sociologia Ruralis 42:233–249CrossRefGoogle Scholar
  12. Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plan B 24:247–261CrossRefGoogle Scholar
  13. Couclelis H (2002) Why I no longer work with agents. In: Parker DC, Berger T, Manson SM (eds) Proceedings of the special workshop on agent-based models of land-use/land-cover change, Santa Barbara, 2001Google Scholar
  14. Crooks A, Castle C, Batty M (2008) Key challenges in agent-based modelling for geo-spatial simulation. Comput Environ Urban Syst 32:417–430CrossRefGoogle Scholar
  15. de Groot WT (1992) Environmental science theory: concepts and methods in a one-world, problem-oriented paradigm. Elsevier, AmsterdamGoogle Scholar
  16. de Groot R (2006) Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landsc Urban Plan 75:175–186CrossRefGoogle Scholar
  17. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574CrossRefPubMedGoogle Scholar
  18. Gasson R (1973) Goals and values of farmers. J Agric Econ 24:521–542CrossRefGoogle Scholar
  19. Gorton M, Douarin E, Davidova S, Latruffe L (2008) Attitudes to agricultural policy and farming futures in the context of the 2003 CAP reform: a comparison of farmers in selected established and new Member States. J Rural Stud 24:322–336CrossRefGoogle Scholar
  20. Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198:115–126CrossRefGoogle Scholar
  21. Grube JW, Mayton DM, Ball-Rokeach SJ (1994) Inducing change in values, attitudes, and behaviors: belief system theory and the method of value self-confrontation. J Soc Issues 50:153–173Google Scholar
  22. Huigen MGA (2004) First principles of the MameLuke multi-actor modelling framework for land use change, illustrated with a Philippine case study. J Environ Manag 72:5–21CrossRefGoogle Scholar
  23. Ilbery BW (1978) Agricultural decision-making: a behavioural perspective. Prog Hum Geogr 2:448–466Google Scholar
  24. Janssen MA, Ostrom E (2006) Empirically based, agent-based models. Ecol Soc 11:37Google Scholar
  25. Jollivet M (1965) D’une méthode typologique pour l’étude des sociétés rurales. Revue Française de Sociologie 6:33–54CrossRefGoogle Scholar
  26. Jongeneel R, Polman NN, Slangen L (2005) Multifunctional alternatives for agriculture in changing landscapes. In: Conference multifunctionality of landscapes: analysis, evaluation and decision support, Justus-Liebig University, Germany, 18–19 May 2005Google Scholar
  27. Jongeneel RA, Polman NBP, Slangen LHG (2008) Why are Dutch farmers going multifunctional? Land Use Policy 25:81–94CrossRefGoogle Scholar
  28. Köbrich C, Rehman T, Khan M (2003) Typification of farming systems for constructing representative farm models: two illustrations of the application of multi-variate analyses in Chile and Pakistan. Agric Syst 76:141–157CrossRefGoogle Scholar
  29. Lambin EF, Geist HJ (2003) Regional differences in tropical deforestation. Environment 45:22–36Google Scholar
  30. Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C (2001) The causes of land-use and land-cover change: moving beyond the myths. Global Environ Change 11:261–269CrossRefGoogle Scholar
  31. Le QB (2005) Multi-agent system for simulation of land-use and land-cover change: a theoretical framework and its first application for an upland watershed in the Central Coast of Vietnam29. Cuvillier Verlag Göttingen, Göttingen, p 283Google Scholar
  32. Le QB, Park SJ, Vlek PLG, Cremers AB (2008) Land-use dynamic simulator (LUDAS): a multi-agent system model for simulating spatio-temporal dynamics of coupled human-landscape system. I. Structure and theoretical specification. Ecol Informatics 3:135–153CrossRefGoogle Scholar
  33. Ligtenberg A, Wachowicz M, Bregt AK, Beulens A, Kettenis DL (2004) A design and application of a multi-agent system for simulation of multi-actor spatial planning. J Environ Manag 72:43–55CrossRefGoogle Scholar
  34. Liu J, Dietz T, Carpenter SR, Folke C, Alberti M, Redman CL, Schneider SH, Ostrom E, Pell AN, Lubchenco J, Taylor WW, Ouyang Z, Deadman P, Kratz T, Provencher W (2007) Coupled human and natural systems. Ambio 36:639–649CrossRefPubMedGoogle Scholar
  35. Matthews R, Gilbert N, Roach A, Polhill J, Gotts N (2007) Agent-based land-use models: a review of applications. Landscape Ecol 22:1447–1459CrossRefGoogle Scholar
  36. McKinney JC (1950) The role of constructive typology in scientific sociological analysis. Soc Forces 28:235–240CrossRefGoogle Scholar
  37. Messina JP, Evans TP, Manson SM, Shortridge AM, Deadman PJ, Verburg PH (2008) Complex systems models and the management of error and uncertainty. J Land Use Sci 3:11–25CrossRefGoogle Scholar
  38. O’Sullivan D, Manson SM, Messina JP, Crawford TW (2006) Space, place, and complexity science. Environ Plan A 38:611–617CrossRefGoogle Scholar
  39. Overmars KP, Verburg PH, Veldkamp T (2007) Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model. Land Use Policy 24:584–599CrossRefGoogle Scholar
  40. Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93:314–337CrossRefGoogle Scholar
  41. Parker DC, Brown D, Polhill J, Deadman PJ, Manson SM (2008) Illustrating a new ‘conceptual design pattern’ for agent-based models of land use via five case studies—the Mr. Potatohead framework. In: López Paredes A, Hernández Iglesias C (eds) Agent-based modelling in natural resource management. Pearson Education, Upper Saddle River, pp 23–51Google Scholar
  42. Petersen SO, Sommer SG, Béline F, Burton C, Dach J, Dourmad JY, Leip A, Misselbrook T, Nicholson F, Poulsen HD, Provolo G, Sørensen P, Vinnerås B, Weiske A, Bernal MP, Böhm R, Juhász C, Mihelic R (2007) Recycling of livestock manure in a whole-farm perspective. Livest Sci 112:180–191CrossRefGoogle Scholar
  43. Pijanowski BC, Brown DG, Shellito BA, Manik GA (2002) Using neural networks and GIS to forecast land use changes: a land transformation model. Comput Environ Urban Syst 26:553–575CrossRefGoogle Scholar
  44. Pontius R, Boersma W, Castella J-C, Clarke K, de Nijs T, Dietzel C, Duan Z, Fotsing E, Goldstein N, Kok K, Koomen E, Lippitt C, McConnell W, Mohd Sood A, Pijanowski B, Pithadia S, Sweeney S, Trung T, Veldkamp A, Verburg P (2008) Comparing the input, output, and validation maps for several models of land change. Ann Reg Sci 42:11–37CrossRefGoogle Scholar
  45. Rindfuss RR, Walsh SJ, Turner BL II, Fox J, Mishra V (2004) Developing a science of land change: challenges and methodological issues. PNAS 101:13976–13981CrossRefPubMedGoogle Scholar
  46. Rindfuss RR, Entwisle B, Walsh SJ, An L, Badenoch N, Brown DG, Deadman P, Evans TP, Fox J, Geoghegan J, Gutmann M, Kelly M, Linderman M, Liu J, Malanson GP, Mena CF, Messina JP, Moran EF, Parker DC, Parton W, Prasartkul P, Robinson DT, Sawangdee Y, Vanwey LK, Verburg PH (2008) Land use change: complexity and comparisons. J Land Use Sci 3:1–10CrossRefPubMedGoogle Scholar
  47. Robinson DT, Brown DG, Parker DC, Schreinemachers P, Janssen MA, Huigen M, Wittmer H, Gotts N, Promburom P, Irwin E, Berger T, Gatzweiler F, Barnaud C (2007) Comparison of empirical methods for building agent-based models in land use science. J Land Use Sci 2:31–55CrossRefGoogle Scholar
  48. Rokeach M (1968) A theory of organization and change within value-attitude systems. J Soc Issues 24:13–33CrossRefGoogle Scholar
  49. Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer experiments. Springer, BerlinGoogle Scholar
  50. Sawyer RK (2003) Artificial societies: multiagent systems and the micro-macro link in sociological theory. Sociol Methods Res 31:325–363CrossRefGoogle Scholar
  51. Siebert R, Toogood M, Knierim A (2006) Factors affecting European farmers’ participation in biodiversity policies. Sociologia Ruralis 46:318–340CrossRefGoogle Scholar
  52. Simon HA (1955) A behavioral model of rational choice. Q J Econ 69:99–118CrossRefGoogle Scholar
  53. Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63:337–365CrossRefGoogle Scholar
  54. Thenail C, Baudry J (2004) Variation of farm spatial land use pattern according to the structure of the hedgerow network (bocage) landscape: a case study in northeast Brittany. Agric Ecosyst Environ 101:53–72CrossRefGoogle Scholar
  55. Turner BL II, Lambin EF, Reenberg A (2007) Land change science special feature: the emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci 104:20666–20671CrossRefPubMedGoogle Scholar
  56. Valbuena D, Verburg PH, Bregt AK (2008) A method to define a typology for agent-based analysis in regional land-use research. Agric Ecosyst Environ 128:27–36CrossRefGoogle Scholar
  57. Verburg PH (2006) Simulating feedbacks in land use and land cover change models. Landscape Ecol 21:1171–1183CrossRefGoogle Scholar
  58. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  59. Willemen L, Verburg PH, Hein L, van Mensvoort MEF (2008) Spatial characterization of landscape functions. Landsc Urban Plan 88:34–43CrossRefGoogle Scholar
  60. Willock J, Deary IJ, Edwards-Jones G, Gibson GJ, McGregor MJ, Sutherland A, Dent JB, Morgan O, Grieve R (1999) The role of attitudes and objectives in farmer decision making: business and environmentally-oriented behaviour in Scotland. J Agric Econ 50:286–303Google Scholar
  61. Wilson GA (2007) Multifunctional agriculture: a transition theory perspective. Cromwell, TrowbridgeCrossRefGoogle Scholar
  62. Wooldridge M, Jennings NR (1995) Intelligent agents: theory and practice. Knowledge Eng Rev 10:115–152CrossRefGoogle Scholar
  63. Zellner ML (2008) Embracing complexity and uncertainty: the potential of agent-based modeling for environmental planning and policy. Plan Theory Practice 9:437–457CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Diego Valbuena
    • 1
  • Peter H. Verburg
    • 1
  • Arnold K. Bregt
    • 1
  • Arend Ligtenberg
    • 1
  1. 1.Department of Environmental SciencesWageningen UniversityWageningenThe Netherlands

Personalised recommendations