Landscape Ecology

, 24:1237 | Cite as

An agent-based approach to model future residential pressure on a regional landscape

  • Corentin M. FontaineEmail author
  • Mark D. A. Rounsevell
Research article


This paper presents a framework to model future residential demand for housing in a polycentric region. The model, called HI-LIFE (Household Interactions through LIFE cycle stages), builds on Agent-Based Modelling (ABM) paradigms. In contrast to traditional equilibrium-based urban economics models that assume a homogenous population of rational actors, ABM focuses on the diversity of heterogeneous household agents and their behaviour in time and in space. The model simulates land-use patterns at the regional scale by integrating qualitative knowledge of agent location preferences with quantitative analysis of urban growth dynamics within a high resolution spatial modelling framework. The model was calibrated for the region of East Anglia in the UK using a semi-quantitative procedure. Simulation of urban dynamics for the future was undertaken for a 25 year period with the assumption of a continuation of baseline behavioural trends. The results demonstrated non-uniform, spatial patterns of urban sprawl with some locations experiencing greater urban development pressure than others. The town of Brundall, in particular, has a large potential demand for residential housing because of its proximity to the principle city, Norwich. As Brundall is also located close to a national park and a river, new housing development in this area would increase the risk of ecological impacts and flood damage. By modelling explicitly agent behaviour and interactions, ABM can simulate the response and adaptation strategies of a population to changing circumstances. This makes ABM especially well suited to the analysis of environmental change and landscape ecology pressures through scenario modelling.


Agent-based modelling Multi-agent systems Urban growth Land-use change Regional landscape Residential demand Household behaviours Location choices Preferences 



The authors would like to thank the Tyndall Centre for Climate Change Research, the University of Edinburgh and the EU-funded PLUREL project for their contribution to this work. The authors would also like to thanks the two anonymous reviewers for their constructive comments.


  1. Akkerman A (2006) Housing as a heuristic condition in the simultaneous projection of population and households. Environ Plan A 38:765–790. doi: 10.1068/a37125 CrossRefGoogle Scholar
  2. Allen J and Lu K (2003) Modeling and prediction of future urban growth in the Charleston region of South Carolina: a GIS-based integrated approach. Conservation Ecology 8(2): 2. (online) URL:
  3. Anderson PW (1972) More is different. Science 177(4047):393–396. doi: 10.1126/science.177.4047.393 CrossRefPubMedGoogle Scholar
  4. Andersson C, Lindgren K, Steen R, White R (2002) Urban growth simulation from “first principles”. Phys Rev 66:1–9Google Scholar
  5. Barredo JI, Kasando M, McCormick N, Lavalle C (2003) Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landsc Urban Plan 64:145–160. doi: 10.1016/S0169-2046(02)00218-9 CrossRefGoogle Scholar
  6. Batty M (2000) Less is more, more is different: complexity, morphology, cities and emergence. Environ Plan B Plan Des 27:167–168. doi: 10.1068/b2702ed CrossRefGoogle Scholar
  7. Batty M (2005) Cities and Complexity: understanding cities with cellular automata, agent-based models and fractals. MIT Press, CambridgeGoogle Scholar
  8. Batty M, Xie Y, Sun Z (1999) Modeling urban dynamics through GIS-based cellular automata. Comput Environ Urban Syst 23:205–233. doi: 10.1016/S0198-9715(99)00015-0 CrossRefGoogle Scholar
  9. Boschma RA (2004) Competitiveness of regions from an evolutionary perspective. Reg Stud 38:1001–1014. doi: 10.1080/0034340042000292601 CrossRefGoogle Scholar
  10. Bousquet F, Le Page C (2004) Multi-agent simulations and ecosystem management: a review. Ecol Modell 176:313–332. doi: 10.1016/j.ecolmodel.2004.01.011 CrossRefGoogle Scholar
  11. Brown DG, Page SE, Riolo R, Rand W (2004) Agent-based and analytical modeling to evaluate the effectiveness of greenbelts. Environ Model Softw 19:1097–1109. doi: 10.1016/j.envsoft.2003.11.012 CrossRefGoogle Scholar
  12. Brown DG, Robinson DT, An L, Nassauer JI, Zellner M, Rand W, Riolo R, Page SE, Low B, Wang ZF (2008) Exurbia from the bottom-up: confronting empirical challenges to characterizing a complex system. Geoforum 39:805–818Google Scholar
  13. Caruso G (2005) Integrating urban economics and cellular automata to model periurbanisation (Spatial dynamics of residential choice in the presence of neighbourhood externalities). PhD thesis, Université catholique de LouvainGoogle Scholar
  14. Caruso G, Peeters D, Cavailhes J, Rounsevell M (2007) Spatial configurations in a periurban city. A cellular automata-based microeconomic model. Reg Sci Urban Econ 37:542–567. doi: 10.1016/j.regsciurbeco.2007.01.005 CrossRefGoogle Scholar
  15. Crooks AT, Castle CJE, Batty M (2008) Key challenges in agent-based modelling for geo-spatial simulation, computers. Environ Urban Syst 32(6):417–430. doi: 10.1016/j.compenvurbsys.2008.09.004 CrossRefGoogle Scholar
  16. Dokmeci V, Berkoz L (2000) Residential-location preferences according to demographic characteristics in Istanbul. Landsc Urban Plan 48:45–55. doi: 10.1016/S0169-2046(99)00080-8 CrossRefGoogle Scholar
  17. Ferber J (2007) Multi-agent concepts and methodologies. In: Phan D, Amblard F (eds) Agent-based modelling and simulation in the social and human sciences. The Bardwell Press, Oxford, pp 7–33Google Scholar
  18. Fontaine CM, Rounsevell MDA, Barbette A-C (2009) Residential household profiles and location trends in a polycentric region (in review)Google Scholar
  19. Fujita M (2002) Economics of agglomeration. Cambridge University Press, CambridgeGoogle Scholar
  20. Fujita M, Krugman P, Venables A (1999) The spatial economy: cities, regions, and international trade. MIT Press, CambridgeGoogle Scholar
  21. Gaffin SR, Rosenzweig C, Xing X, Yetman G (2004) Downscaling and geo-spatial gridding of socio-economic projections from the IPCC Special Report on Emissions Scenarios (SRES). Glob Environ Change 14:105–123. doi: 10.1016/j.gloenvcha.2004.02.004 CrossRefGoogle Scholar
  22. Gilbert N, Bankes S (2002) Platforms and methods for agent-based modeling. Proc Natl Acad Sci USA 99:7197–7198. doi: 10.1073/pnas.072079499 CrossRefPubMedGoogle Scholar
  23. Hagen-Zanker A (2006) Map comparison methods that simultaneously address overlap and structure. J Geogr Syst 8:165–185. doi: 10.1007/s10109-006-0024-y CrossRefGoogle Scholar
  24. Hietel E, Waldhardt R, Otte A (2004) Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landscape Ecol 19:473–489. doi: 10.1023/B:LAND.0000036138.82213.80 CrossRefGoogle Scholar
  25. Holman I, Rounsevell M, Shackley S, Harrison P, Nicholls R, Berry P, Audsley E (2005a) A regional, multi-sectoral and integrated assessment of the impacts of climate and socio-economic change in the UK: I methodology. Clim Change 71:9–41. doi: 10.1007/s10584-005-5927-y CrossRefGoogle Scholar
  26. Holman I, Nicholls R, Berry P, Harrison P, Audsley E, Shackley S, Rounsevell M (2005b) A regional, multi-sectoral and integrated assessment of the impacts of climate and socio-economic change in the UK: II results. Clim Change 71:43–73. doi: 10.1007/s10584-005-5956-6 CrossRefGoogle Scholar
  27. Holman IP, Rounsevell M, Cojacaru G, Shackley S, McLachlan C, Audsley E, Berry PM, Fontaine CM, Harrison P, Henriques C, Mokrech M, Nicholls RJ, Pearn KR, Richards JA (2008) The concepts and development of a participatory regional integrated assessment tool. Clim Change 90(1–2):5–30. doi: 10.1007/s10584-008-9453-6 CrossRefGoogle Scholar
  28. Jager W, Janssen M, De Vries H, De Greef J, Vlek C (2000) Behaviour in commons dilemmas: Homo economicus and Homo psychologicus in an ecological-economical model. Ecol Econ 35:357–379. doi: 10.1016/S0921-8009(00)00220-2 CrossRefGoogle Scholar
  29. Lindberg E, Hartig T, Garvill J, Garling T (1992) Residential-location preferences across the life-span. J Environ Psychol 12:187–198. doi: 10.1016/S0272-4944(05)80070-2 CrossRefGoogle Scholar
  30. Luck M, Wu J (2002) A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landscape Ecol 17:327–339. doi: 10.1023/A:1020512723753 CrossRefGoogle Scholar
  31. Lutz W, Sanderson W, Scherbov S (2008) The coming acceleration of global population ageing. Nature 451(7179):716–719. doi: 10.1038/nature06516 CrossRefPubMedGoogle Scholar
  32. Matthews R (2006) The people and landscape model (PALM): towards full integration of human decision-making and biophysical simulation models. Ecol Modell 194:329–343. doi: 10.1016/j.ecolmodel.2005.10.032 CrossRefGoogle Scholar
  33. Matthews RB, Gilbert NG, Roach A, Polhill JG, Gotts NM (2007) Agent-based land-use models: a review of applications. Landscape Ecol 22:1447–1459. doi: 10.1007/s10980-007-9135-1 CrossRefGoogle Scholar
  34. Monticino M, Acevedo M, Callicott B, Cogdill T, Lindquist C (2007) Coupled human and natural systems: a multi-agent-based approach. Environ Model Softw 22:656–663. doi: 10.1016/j.envsoft.2005.12.017 CrossRefGoogle Scholar
  35. Nakicenovic N, Swart R (2000) IPCC (ed) Special Report on Emissions Scenarios (IPCC), Cambridge University Press, UKGoogle Scholar
  36. Niedomysl T (2008) Residential preferences for interregional migration in Sweden: demographic, socioeconomic, and geographical determinants. Environ Plan A 40:1109–1131. doi: 10.1068/a39177 CrossRefGoogle Scholar
  37. Nijkamp P, Van Wissen L, Rima A (1993) A household life cycle model for residential relocation behaviour. Socioecon Plann Sci 27:35–53. doi: 10.1016/0038-0121(93)90027-G CrossRefGoogle Scholar
  38. O’Neill BC (2005) Population scenarios based on probabilistic projections: an application for the millennium ecosystem assessment. Popul Environ 26:229–254. doi: 10.1007/s11111-005-1876-7 CrossRefGoogle Scholar
  39. Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93:314–337. doi: 10.1111/1467-8306.9302004 CrossRefGoogle Scholar
  40. Phan D, Amblard F (eds) (2007) Agent-based modelling and simulation in the social and human sciences. The Bardwell Press, OxfordGoogle Scholar
  41. Reginster I, Rounsevell M (2006) Scenarios of future urban land-use in Europe. Environ Plan B Plan Des 33:619–636. doi: 10.1068/b31079 CrossRefGoogle Scholar
  42. Richards JA, Mokrech M, Berry PM, Nicholls RJ (2008) Regional assessment of climate change impacts on coastal and fluvial ecosystems and the scope for adaptation. Clim Change 90:141–167. doi: 10.1007/s10584-008-9451-8 CrossRefGoogle Scholar
  43. Rounsevell MDA, Ewert F, Reginster I, Leemans R, Carter TR (2005) Future scenarios of European agricultural land-use II: projecting changes in cropland and grassland. Agric Ecosyst Environ 107:117–135. doi: 10.1016/j.agee.2004.12.002 CrossRefGoogle Scholar
  44. Rounsevell M, Reginster I, Araujo M, Carter T, Dendoncker N, Ewert F, House J, Kankaanpaa S, Leemans R, Metzger M, Schmit C, Smith P, Tuck G (2006) A coherent set of future land-use change scenarios for Europe. Agric Ecosyst Environ 114:57–68. doi: 10.1016/j.agee.2005.11.027 CrossRefGoogle Scholar
  45. Torrens PM (2001) Can Geocomputation save urban simulation? Throw some agents into the mixture, simmer, and wait…, University College of London, Centre for Advanced Spatial Analysis, Working Paper series: Publication 32Google Scholar
  46. Torrens PM (2002) Cellular automata and multi-agent systems as planning support tools. In: Geertman SS, Stillwell J (eds) Planning support systems in practice. Springer-Verlag, London, pp 205–222Google Scholar
  47. Walker JL, Li JP (2007) Latent lifestyle preferences and household location decisions. J Geogr Syst 9:77–101. doi: 10.1007/s10109-006-0030-0 CrossRefGoogle Scholar
  48. White R, Engelen G (1997) Cellular automata as the basis of integrated dynamic regional modelling. Environ Plan B Plan Des 24:235–246. doi: 10.1068/b240235 CrossRefGoogle Scholar
  49. White R, Engelen G (2000) High-resolution integrated modeling of the spatial dynamics of urban and regional systems. Comput Environ Urban Syst 24:383–400. doi: 10.1016/S0198-9715(00)00012-0 CrossRefGoogle Scholar
  50. Wickham JD, O’Neill RV, Jones KB (2000) A geography of ecosystem vulnerability. Landscape Ecol 15:495–504. doi: 10.1023/A:1008176120891 CrossRefGoogle Scholar
  51. Wilensky U (1999) NetLogo. Center for connected learning and computer-based modeling, Northwestern University, Evanston
  52. Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecol 17(4):355–365. doi: 10.1023/A:1020561630963 CrossRefGoogle Scholar
  53. Wu B, Birkin M, Rees P (2008) A spatial microsimulation model with student agents, computers. Environ Urban Syst 32:440–453. doi: 10.1016/j.compenvurbsys.2008.09.013 Google Scholar
  54. Yin L, Muller B (2007) Residential location and the biophysical environment: exurban development agents in a heterogeneous landscape. Environ Plan B Plan Des 34:279–295. doi: 10.1068/b31182 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Corentin M. Fontaine
    • 1
    Email author
  • Mark D. A. Rounsevell
    • 1
  1. 1.Centre for the Study of Environmental Change and Sustainability (CECS), School of GeoSciencesThe University of EdinburghEdinburghUK

Personalised recommendations