Landscape Ecology

, 24:519 | Cite as

Disentangling habitat and social drivers of nesting patterns in songbirds

  • S. J. Melles
  • D. Badzinski
  • M.-J. Fortin
  • F. Csillag
  • K. Lindsay
Research Article


Nest locations of breeding birds are often spatially clustered. This tendency to nest together has generally been related to a patchy distribution of nesting habitat in landscape studies, but behavioral studies of species with clustered breeding patterns draw attention to the importance of social and biotic factors. Indeed, it is becoming increasingly apparent that the breeding system of many territorial, migrant birds may be semi-colonial. The reasons for, and extent of, spatial clustering in their breeding systems are not well understood. Our goal was to tease apart the influence of habitat availability and social drivers of clustered breeding in a neotropical migrant species, the hooded warbler (Wilsonia citrina). To test alternative hypotheses related to clustered habitat or conspecific attraction, we combined a habitat classification based on remote sensing with point pattern analysis of nesting sites. Nest locations (n = 150, 1999–2004), collected in a 1213 ha forested area of Southern Ontario (Canada), were analyzed at multiple spatial scales. Ripley’s K and pair-correlation functions g (uni- and bivariate) were used to test whether nests were clustered merely because potential nesting habitat was also clustered, or whether nests were additionally clustered with respect to conspecifics. Nest locations tended to be significantly clustered at intermediate distances (particularly between 240 and 420 m). Nests were randomly distributed within available habitat at larger distance scales, up to 1500 m. A reasonable hypothesis to explain the detected additional clustering, and one that is consistent with the results of several behavioral studies, is that females pack their nests more tightly than the available habitat requires to be situated closer to their neighbors’ mates. Linking spatially explicit, point pattern analysis with strong inference based on Monte Carlo tests may bring us closer to understanding the generality and reasons behind conspecific attraction at different spatial scales.


Point pattern analysis Spatial aggregation Wilsonia citrina Conspecific attraction Pair-correlation function 



We thank all of the field assistants (Jody Allair, Jessie Antoniak, Jennifer Carson, Peter Carson, Rhonda Donley, Rosalind Ford, Christian Friis, Mary Gartshore, Audrey Heagy, Tara Innes, Brad McLeod, Stuart Mackenzie, David Okines, Ross Wood and Becky Whittam). Funding was provided by Environment Canada and Bird Studies Canada through the Hooded warbler/Acadian flycatcher Recovery Team, with support from: Environment Canada–Ontario Region’s Species at Risk program; a PREA Award and an NSERC research grant to M.-J. Fortin; and the Frederick Ide Graduate Award and an Ontario Graduate Scholarship to S. J. Melles. We also thank all anonymous referees for their very valuable suggestions and we are grateful to Thorsten Wiegand and Stephan Getzin for their analysis advice.


  1. Allee WC (1931) Animal aggregations: a study in general sociology. University of Chicago Press, ChigagoGoogle Scholar
  2. Bailey TC, Gatrell AC (1995) Interactive spatial data analysis. Longman Group, LondonGoogle Scholar
  3. Besag J (1977) Contribution to the discussion of Dr. Ripley’s paper. J R Stat Soc Ser B Stat Methodol 39:193–195Google Scholar
  4. Bourque J, Desrochers A (2006) Spatial aggregation of forest songbird territories and possible implications for area sensitivity. Avian Conserv Ecol 2.
  5. Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000) Spatial patterns in the distribution of tropical tree species. Science 288:1414–1418. doi: 10.1126/science.288.5470.1414 PubMedCrossRefGoogle Scholar
  6. Danchin E, Giraldeau LA, Valone TJ, Wagner RH (2004) Public information: from nosy neighbors to cultural evolution. Science 305:487–491. doi: 10.1126/science.1098254 PubMedCrossRefGoogle Scholar
  7. Dennis RLH, Shreeve TG, Van Dyke H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426. doi: 10.1034/j.1600-0706.2003.12387.x CrossRefGoogle Scholar
  8. Diggle PJ (2003) Statstical analysis of point patterns, 2nd edn. Arnold, LondonGoogle Scholar
  9. Diggle PJ, Lange N, Benes FM (1991) Analysis of variance for replicated spatial point patterns in clinical neuroanatomy. J Am Stat Assoc 86:618–625. doi: 10.2307/2290390 CrossRefGoogle Scholar
  10. Doligez B, Danchin E, Clobert J (2002) Public information and breeding habitat selection in a wild bird population. Science 297:1168–1170. doi: 10.1126/science.1072838 PubMedCrossRefGoogle Scholar
  11. Etterson MA (2003) Conspecific attraction in loggerhead shrikes: implications for habitat conservation and reintroduction. Biol Conserv 114:199–205. doi: 10.1016/S0006-3207(03)00024-7 CrossRefGoogle Scholar
  12. Fletcher RJ (2007) Species interactions and population density mediate the use of social cues for habitat selection. J Anim Ecol 76:598–606PubMedCrossRefGoogle Scholar
  13. Fletcher RJ, Miller CW (2006) On the evolution of hidden leks and the implications for reproductive and habitat selection behaviours. Anim Behav 71:1247–1251. doi: 10.1016/j.anbehav.2005.11.007 CrossRefGoogle Scholar
  14. Fortin M-J, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, CambridgeGoogle Scholar
  15. Friesen L, Cadman M, Carson P, Elliott K, Gartshore M, Martin M, McCracken J, Oliver J, Prevett P, Stutchbury B, Sutherland D, Woodliffe A (2000) National recovery plan for the Acadian flycatcher (Empidonax virescens) and Hooded warbler (Wilsonia citrina), Ottawa, p 33Google Scholar
  16. Getzin S, Dean C, He FL, Trofymow JA, Wiegand K, Wiegand T (2006) Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography 29:671–682. doi: 10.1111/j.2006.0906-7590.04675.x CrossRefGoogle Scholar
  17. Getzin S, Wiegand T, Wiegand K, He FL (2008) Heterogeneity influences spatial patterns and demographics in forest stands. J Ecol 96:807–820. doi: 10.1111/j.1365-2745.2008.01377.x CrossRefGoogle Scholar
  18. Goreaud F, Pélissier R (2003) Avoiding misinterpretation of biotic interactions with the intertype K-12-function: population independence vs random labelling hypotheses. J Veg Sci 14:681–692. doi: 10.1658/1100-9233(2003)014[0681:AMOBIW]2.0.CO;2 CrossRefGoogle Scholar
  19. Haase P (1995) Spatial pattern-analysis in ecology based on ripley K-function–introduction and methods of edge correction. J Veg Sci 6:575–582. doi: 10.2307/3236356 CrossRefGoogle Scholar
  20. Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31:295–311. doi: 10.1016/0022-5193(71)90189-5 PubMedCrossRefGoogle Scholar
  21. Howlett JS, Stutchbury BJM (2003) Determinants of between-season site, territory, and mate fidelity in hooded warblers (Wilsonia citrina). Auk 120:457–465. doi: 10.1642/0004-8038(2003)120[0457:DOBSTA]2.0.CO;2 CrossRefGoogle Scholar
  22. Kiester AR, Slatkin M (1974) Strategy of movement and resource utilization. Theor Popul Biol 6:1–20. doi: 10.1016/0040-5809(74)90028-8 PubMedCrossRefGoogle Scholar
  23. Lancaster J, Downes BJ (2004) Spatial point pattern analysis of available and exploited resources. Ecography 27:94–102. doi: 10.1111/j.0906-7590.2004.03694.x CrossRefGoogle Scholar
  24. Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation. Wiley, New YorkGoogle Scholar
  25. Lima SL, Zollner PA (1996) Towards a behavioral ecology of ecological landscapes. Trends Ecol Evol 11:131–135. doi: 10.1016/0169-5347(96)81094-9 CrossRefGoogle Scholar
  26. Lotwick HW, Silverman BW (1982) Methods for analyzing spatial processes of several types of points. J R Stat Soc Ser B Stat Methodol 44:406–413Google Scholar
  27. Melles SJ (2007) Effects of forest connectivity, habitat availability, and intraspecific biotic processes on range expansion: Hooded warbler (Wilsonia citrina) as a model species. Doctoral thesis, University of Toronto, Toronto (171 pp)Google Scholar
  28. Mills AM, Rising JD, Jackson DA (2006) Conspecific attraction during establishment of least flycatcher clusters. J Field Ornithol 77:34–38. doi: 10.1111/j.1557-9263.2006.00009.x CrossRefGoogle Scholar
  29. Muller KL, Stamps JA, Krishnan VV, Willits NH (1997) The effects of conspecific attraction and habitat quality on habitat selection in territorial birds (Troglodytes aedon). Am Nat 150:650–661. doi: 10.1086/286087 PubMedCrossRefGoogle Scholar
  30. Neudorf DLH (2004) Extrapair paternity in birds: understanding variation among species. Auk 121:302–307. doi: 10.1642/0004-8038(2004)121[0302:EPIBUV]2.0.CO;2 CrossRefGoogle Scholar
  31. Neudorf DL, Stutchbury BJM, Piper WH (1997) Covert extraterritorial behavior of female hooded warblers. Behav Ecol 8:595–600. doi: 10.1093/beheco/8.6.595 CrossRefGoogle Scholar
  32. Nocera J, Forbes G, Giraldeau LA (2006) Inadvertent social information in breeding site selection of natal dispersing birds. Proc R Soc Lond B Biol Sci 273:349–355. doi: 10.1098/rspb.2005.3318 CrossRefGoogle Scholar
  33. Norris DR, Stutchbury BJM (2001) Extraterritorial movements of a forest songbird in a fragmented landscape. Conserv Biol 15:729–736. doi: 10.1046/j.1523-1739.2001.015003729.x CrossRefGoogle Scholar
  34. Pärt T, Doligez B (2003) Gathering public information for habitat selection: prospecting birds cue on parental activity. Proc R Soc Lond B Biol Sci 270:1809–1813. doi: 10.1098/rspb.2003.2419 CrossRefGoogle Scholar
  35. Pasher J, King D, Lindsay K (2007) Modelling and mapping potential hooded warbler (Wilsonia citrina) habitat using remotely sensed imagery. Remote Sens Environ 107:471–483. doi: 10.1016/j.rse.2006.09.022 CrossRefGoogle Scholar
  36. Perry EF, Andersen DE (2003) Advantages of clustered nesting for least flycatchers in north-central Minnesota. Condor 105:756–770. doi: 10.1650/7162 CrossRefGoogle Scholar
  37. Riginos C, Milton SJ, Wiegand T (2005) Context-dependent interactions between adult shrubs and seedlings in a semi-arid shrubland. J Veg Sci 16:331–340. doi: 10.1658/1100-9233(2005)016[0331:CIBASA]2.0.CO;2 CrossRefGoogle Scholar
  38. Ripley BD (1976) 2nd-order analysis of stationary point processes. J Appl Probab 13:255–266. doi: 10.2307/3212829 CrossRefGoogle Scholar
  39. Ripley BD (1981) Spatial statistics. Wiley, New YorkCrossRefGoogle Scholar
  40. Schiffers K, Schurr FM, Tielborger K, Urbach C, Moloney K, Jeltsch F (2008) Dealing with virtual aggregation—a new index for analysing heterogeneous point patterns. Ecography 31:545–555. doi: 10.1111/j.0906-7590.2008.05374.x CrossRefGoogle Scholar
  41. Schurr FM, Bossdorf O, Milton SJ, Schumacher J (2004) Spatial pattern formation in semi-arid shrubland: a priori predicted versus observed pattern characteristics. Plant Ecol 173:271–282. doi: 10.1023/B:VEGE.0000029335.13948.87 CrossRefGoogle Scholar
  42. Stamps J, Krishnan VV (2005) Nonintuitive cue use in habitat selection. Ecology 86:2860–2867. doi: 10.1890/05-0290 CrossRefGoogle Scholar
  43. Stoyan D, Stoyan H (1994) Fractals, random shapes and point fields: methods of geometrical statistics. Wiley, New YorkGoogle Scholar
  44. Stutchbury BJ, Rhymer JM, Morton ES (1994) Extrapair paternity in hooded warblers. Behav Ecol 5:384–392. doi: 10.1093/beheco/5.4.384 CrossRefGoogle Scholar
  45. Stutchbury BJM, Piper WH, Neudorf DL, Tarof SA, Rhymer JM, Fuller G, Fleischer RC (1997) Correlates of extra-pair fertilization success in hooded warblers. Behav Ecol Sociobiol 40:119–126. doi: 10.1007/s002650050324 CrossRefGoogle Scholar
  46. Tarof SA, Ratcliffe LM (2004) Habitat characteristics and nest predation do not explain clustered breeding in least flycatchers (Empidonax minimus). Auk 121:877–893. doi: 10.1642/0004-8038(2004)121[0877:HCANPD]2.0.CO;2 CrossRefGoogle Scholar
  47. Tarof SA, Stutchbury BJM, Piper WH, Fleischer RC (1998) Does breeding density covary with extra-pair fertilizations in Hooded Warblers? J Avian Biol 29:145–154. doi: 10.2307/3677192 CrossRefGoogle Scholar
  48. Tarof SA, Ratcliffe LM, Kasumovic MM, Boag PT (2005) Are least flycatcher (Empidonax minimus) clusters hidden leks? Behav Ecol 16:207–217. doi: 10.1093/beheco/arh155 CrossRefGoogle Scholar
  49. Wagner RH (1993) The pursuit of extra-pair copulations by female birds–a new hypothesis of colony formation. J Theor Biol 163:333–346. doi: 10.1006/jtbi.1993.1123 CrossRefGoogle Scholar
  50. Wagner RH (1998) Hidden leks: sexual selection and the clustering of avian territories. In: Parker PG, Burley NT (eds) Avian reproductive tactics: female and male perspectives. American Ornithologists’ Union, Washington, pp 123–145Google Scholar
  51. Ward MP, Schlossberg S (2004) Conspecific attraction and the conservation of territorial songbirds. Conserv Biol 18:519–525. doi: 10.1111/j.1523-1739.2004.00494.x CrossRefGoogle Scholar
  52. Whittam RM, McCracken JD, Francis CM, Gartshore ME (2002) The effects of selective logging on nest-site selection and productivity of hooded warblers (Wilsonia citrina) in Canada. Can J Zool 80:644–654. doi: 10.1139/z02-039 CrossRefGoogle Scholar
  53. Wiegand T (2004) Programita software to perform point pattern analysis with Ripley’s L and the O-ring statistic. UFZ Centre for Environmental Research, Leipzig-Halle.
  54. Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104:209–229. doi: 10.1111/j.0030-1299.2004.12497.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • S. J. Melles
    • 1
    • 2
  • D. Badzinski
    • 3
  • M.-J. Fortin
    • 1
  • F. Csillag
    • 4
  • K. Lindsay
    • 5
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada
  2. 2.Environment CanadaBurlingtonCanada
  3. 3.Bird Studies CanadaPort RowanONCanada
  4. 4.Department of GeographyUniversity of TorontoTorontoCanada
  5. 5.Environment CanadaGatineau (Hull)Canada

Personalised recommendations