Landscape Ecology

, Volume 24, Issue 2, pp 149–155 | Cite as

Landscapes in Time and Space

  • Lindsey GillsonEmail author


Landscape ecology has a temporal dimension, and the role of past processes in shaping landscapes is increasingly recognised. To date, the interface between landscape ecology and palaeoecology has proved most productive in understanding the impacts of climate change and in discovering the extent of past human impacts on ecosystems. Further areas of synergy are emerging. This Perspective gives selected examples of five main areas of synergy between palaeoecology and landscape ecology: dynamic landscape mosaics; resilience and thresholds; biocomplexity; adaptive cycles; and in the landscape ecology of invasive spread.


Landscape mosaics Biocomplexity Resilience Thresholds Adaptive cycles Palaeo-invasions 


  1. Allen CD, Betancourt JL, Swetnam TW (2003) Landscape changes in the Southwestern United States: techniques, long-term data sets, and trends page. Land Use History of North America.
  2. Allen TFH, Starr TB (1982) Hierarchy perspectives for ecological complexity. University of Chicago Press, ChicagoGoogle Scholar
  3. Berkes F, Folke C (eds) (1998) Linking social and ecological systems: management practices and social mechanisms for building resilience. Cambridge University Press, New YorkGoogle Scholar
  4. Biggs HC, Rogers KH (2003) An adaptive system to link science, monitoring, and management in practice. In: duToit JT, Rogers KH, Biggs HC (eds) The Kruger experience: ecology and management of savanna heterogeneity. Island Press, Washington, pp 59–80Google Scholar
  5. Björkman L, Bradshaw R (1996) The immigration of Fagus sylvatica L., Picea abies (L.) Karst. into a natural forest stand in southern Sweden during the last 2000 years. J Biogeogr 23:235–244. doi: 10.1046/j.1365-2699.1996.00972.x CrossRefGoogle Scholar
  6. Boyd WE, Lentfer CJ, Parr J (2005) Interactions between human activity, volcanic eruptions and vegetation during the holocene at Garua and Numundo, West New Britain, PNG. Quat Res 64:384–398. doi: 10.1016/j.yqres.2005.08.017 CrossRefGoogle Scholar
  7. Bradshaw RHW, Lindbladh M (2005) Regional spread and stand-scale establishment of Fagus sylvatica and Picea abies in scandinavia : paleoperspective in ecology. Ecology 86:1679–1686. doi: 10.1890/03-0785 CrossRefGoogle Scholar
  8. Brock WA, Carpenter SR (2006) Variance as a leading indicator of regime shift in ecosystem services. Ecology and Society 11 onlineGoogle Scholar
  9. Callicott JB, Rozzi R, Delgado L, Monticino M, Acevedo M, Harcombe P (2007) Biocomplexity and conservation of biodiversity hotspots: three case studies from the Americas Philosophical Transactions of the Royal Society of London Series. B-Biological Sciences 362:321–333CrossRefGoogle Scholar
  10. Chapin FS, Callaghan TV, Bergeron Y, Fukuda M, Johnstone JF, Juday G, Zimov SA (2004) Global change and the boreal forest: thresholds, shifting states or gradual change? Ambio 33:361–365. doi: 10.1639/0044-7447(2004)033[0361:GCATBF]2.0.CO;2 PubMedCrossRefGoogle Scholar
  11. Coughenour MB, Ellis JE (1993) Landscape and climatic control of woody vegetation in a dry tropical ecosystem: Turkana District, Kenya. J Biogeogr 20:383–398. doi: 10.2307/2845587 CrossRefGoogle Scholar
  12. Cumming GS, Barnes G, Perz S, Schmink M, Sieving KE, Southworth J, Binford M, Holt RD, Stickler C, Van Holt T (2005) An exploratory framework for the emprirical measurement of resilience. Ecosystems (N Y, Print) 8:975–987. doi: 10.1007/s10021-005-0129-z CrossRefGoogle Scholar
  13. Dearing JA (2008) Landscape change and resilience theory: a palaeoenvironmental assessment from Yunnan, SW China. Holocene 18:117–127. doi: 10.1177/0959683607085601 CrossRefGoogle Scholar
  14. Delcourt HR, Delcourt PA (1988) Quaternary landscape ecology: relevant scale in space and time. Landscape Ecol 2:23–44. doi: 10.1007/BF00138906 CrossRefGoogle Scholar
  15. Delcourt HR, Delcourt PA (1997) Pre-Columbian Native American use of fire on southern Appalachian landscapes. Conserv Biol 11:1010–1014. doi: 10.1046/j.1523-1739.1997.96338.x CrossRefGoogle Scholar
  16. Delcourt PA, Delcourt HR (1987) Late-Quaternary dynamics of temperate forests: applications of paleoecology to issues of global environmental change. Quat Sci Rev 6:129–146Google Scholar
  17. Delcourt PA, Delcourt HR (1998) Paleoecological insights on conservation of biodiversity: a focus on species, ecosystems, and landscapes. Ecol Appl 8:921–934Google Scholar
  18. Foster DR (2002) Conservation issues and approaches for dynamic cultural landscapes. J Biogeogr 29:1533–1535. doi: 10.1046/j.1365-2699.2002.t01-1-00788.x CrossRefGoogle Scholar
  19. Frelich LE, Reich PB (1998) Disturbance severity and threshold reponses in the Boreal Forest. Conserv Ecol 2:7Google Scholar
  20. Gillson L (2004) Evidence of hierarchical patch dynamics in an East African Savanna? Landscape Ecol 19:883–894. doi: 10.1007/s10980-004-0248-5 CrossRefGoogle Scholar
  21. Gillson L, Willis KJ (2004) ‘As Earth’s testimonies tell’: wilderness conservation in a changing world. Ecol Lett 7:990–998. doi: 10.1111/j.1461-0248.2004.00658.x CrossRefGoogle Scholar
  22. Gillson L (2006) A “large infrequent disturbance” in an East African savanna. Afr J Ecol 44:458–467. doi: 10.1111/j.1365-2028.2006.00662.x CrossRefGoogle Scholar
  23. Gillson L, Duffin KI (2007) Thresholds of potential concern as benchmarks in the management of African savannahs. Philos Trans R Soc Lond B Biol Sci 362:309–319. doi: 10.1098/rstb.2006.1988 PubMedCrossRefGoogle Scholar
  24. Gillson L, Ekblom A, Willis KJ, Froyd C (2008) Holocene Palaeo-invasions: the link between pattern, process and scale in invasion ecology? Landscape Ecol 23(7):757–769CrossRefGoogle Scholar
  25. Groffman PM, Baron JS, Blett T, Gold AJ, Goodman I, Gunderson LH, Levinson BM, Palmer MA, Paerl HW, Peterson GD, Poff NL, Rejeski DW, Reynolds JF, Turner MG, Weathers KC, Wiens J (2006) Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems (N Y, Print) 9(1):1–13. doi: 10.1007/s10021-003-0142-z CrossRefGoogle Scholar
  26. Gunderson LH, Holling CS (eds) (2001) Panarchy: understanding transformations in human and natural systems. Island Press, WashingtonGoogle Scholar
  27. Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23. doi: 10.1146/ CrossRefGoogle Scholar
  28. Holling CS, Gunderson LH, Ludwig D (2001) Chapter 1: In search of a theory of adaptive change. In: Gunderson LH, Holling CS (eds) Panarchy: understanding transformations in human and natural systems. Island press, WashingtonGoogle Scholar
  29. Kotliar N, Wiens JA (1990) Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–260. doi: 10.2307/3545542 CrossRefGoogle Scholar
  30. Landres PB, Morgan P, Swanson FJ (1999) Overview of the use of natural variability concepts in managing ecological systems. Ecol Appl 9:1179–1188Google Scholar
  31. Lindenmayer DB, Luck GW (2005) Synthesis: thresholds in conservation and management. Biol Conserv 124:351–354. doi: 10.1016/j.biocon.2005.01.041 CrossRefGoogle Scholar
  32. Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vázquez DP (2006) Biotic interactions and plant invasions. Ecol Lett 9(6):726–740PubMedCrossRefGoogle Scholar
  33. O’Neill RV, De Angelis D, Waide J, Allen T (1986) A hierarchical concept of ecosystems. Princeton University Press, PrincetonGoogle Scholar
  34. Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24. doi: 10.1016/j.tree.2003.09.010 PubMedCrossRefGoogle Scholar
  35. Parshall T (2002) Late-Holocene stand-scale invasion by hemlock (Tsuga canadensis) at its western range limit. Ecology 83:1386–1398CrossRefGoogle Scholar
  36. Perrings C, Dehnen-Schmutz K, Touza J, Williamson M (2005) How to manage biological invasions under globalization. Trends Ecol Evol 20:212–215. doi: 10.1016/j.tree.2005.02.011 PubMedCrossRefGoogle Scholar
  37. Pickett S, Collins S, Armesto J (1987) A hierarchical consideration of causes and mechanisms of succession. Vegetatio 69:109–114. doi: 10.1007/BF00038691 CrossRefGoogle Scholar
  38. Pickett S, Kolasa J, Armesto J, Collins S (1989) The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54:129–136. doi: 10.2307/3565258 CrossRefGoogle Scholar
  39. Pickett ST, Parker VT, Fiedler PL (1992) The new paradigm in ecology: implications for conservation biology above the species level. In: Fiedler PL, Jain SK (eds) conservation biology. Chapman and Hall, New York, pp 65–88Google Scholar
  40. Rejmánek M (1999) Holocene invasions: finally the resolution ecologists were waiting for!. Trends Ecol Evol 14:8–10. doi: 10.1016/S0169-5347(98)01517-1 PubMedCrossRefGoogle Scholar
  41. Rhemtulla JM, Mladenoff DJ (2007) Why history matters in landscape ecology. Landscape Ecol 22:1–3. doi: 10.1007/s10980-007-9163-x CrossRefGoogle Scholar
  42. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi: 10.1046/j.1472-4642.2000.00083.x CrossRefGoogle Scholar
  43. Romme WH, Everham EH, Frelich FL, Mortiz MA, Sparks RE (1998) Are large, infrequent disturbances qualitatively different from small, frequent disturbances? Ecosystems (N Y, Print) 1:524–534. doi: 10.1007/s100219900048 CrossRefGoogle Scholar
  44. Smol JP, Douglas MSV (2007) Crossing the final ecological threshold in high Arctic ponds. Proc Natl Acad Sci USA 104:12395–12397. doi: 10.1073/pnas.0702777104 PubMedCrossRefGoogle Scholar
  45. Swetnam TW, Allen CD, Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206. doi: 10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2 CrossRefGoogle Scholar
  46. Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109. doi: 10.1023/A:1010632015572 CrossRefGoogle Scholar
  47. Thomas MF (2001) Landscape sensitivity in time and space-an introduction. Catena 42:83–98. doi: 10.1016/S0341-8162(00)00133-8 CrossRefGoogle Scholar
  48. Turner MG, Baker WL, Peterson CJ, Peet RK (1998) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems (N Y, Print) 1:511–523. doi: 10.1007/s100219900047 CrossRefGoogle Scholar
  49. Turner MG, Dale VH (1998) Comparing large, infrequent disturbances: what have we learned? Ecosystems (N Y, Print) 1:493–496. doi: 10.1007/s100219900045 CrossRefGoogle Scholar
  50. Urban D, O’Neill RV, Shugart HH Jr (1987) Landscape Ecology. A hierarchical perspective can help scientists understand spatial patterns. Bioscience 37:119–127. doi: 10.2307/1310366 CrossRefGoogle Scholar
  51. Watt AS (1947) Pattern and process in the plant community. J Ecol 35:1–22. doi: 10.2307/2256497 CrossRefGoogle Scholar
  52. Willis KJ, Whittaker RJ (2002) Species diversity: scale matters. Science 295:1245–1246. doi: 10.1126/science.1067335 PubMedCrossRefGoogle Scholar
  53. Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation science. Science 314:1261–1265. doi: 10.1126/science.1122667 PubMedCrossRefGoogle Scholar
  54. Willis KJ, Kleczkowski A, New M, Whittaker RJ (2007) Testing the impact of climate variability on European plant diversity: 320, 000 years of water-energy dynamics and its long-term influence on plant taxonomic richness. Ecol Lett 10:673–679. doi: 10.1111/j.1461-0248.2007.01056.x PubMedCrossRefGoogle Scholar
  55. With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203. doi: 10.1046/j.1523-1739.2002.01064.x CrossRefGoogle Scholar
  56. With KA (2004) Assessing the risk of invasive spread in fragmented landscapes. Risk Anal 24:803–815. doi: 10.1111/j.0272-4332.2004.00480.x PubMedCrossRefGoogle Scholar
  57. Wu J, Loucks O (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70:439–466. doi: 10.1086/419172 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Plant Conservation Unit, Botany DepartmentUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations