Advertisement

Landscape Ecology

, Volume 24, Issue 3, pp 375–390 | Cite as

Effects of macro and micro-environmental factors on the species richness of terrestrial tardigrade assemblages in an Iberian mountain environment

  • Noemí GuilEmail author
  • Joaquín Hortal
  • Sara Sánchez-Moreno
  • Annie Machordom
Research Article

Abstract

Tardigrade communities are affected by micro and macro-environmental conditions but only micro-environmental variables, and altitudinal gradients have been studied. We review previous reports of altitudinal effects and evaluate the influence by interacting macro- (climate, soils, biome, and others) and micro-environmental (vegetation, moss and leaf litter) factors on tardigrade assemblages at the Sierra de Guadarrama mountain range (Iberian Central System Mountains, Spain). Terrestrial tardigrade assemblages were sampled using standard cores to collect leaf litter and mosses growing on rocks. General Linear Models were used to examine relationships between Tardigrada species richness and abundance, and macro- and micro-environmental variables (altitude, habitat characteristics, local habitat structure and dominant leaf litter type, and two bioclimatic classifications). Variation partitioning techniques were used to separate the effects of altitude and habitat variation, and to quantify the independent influences of climate and soil, vegetation structure and dominant type of leaf litter. Altitude shows a unimodal relationship with tardigrade species richness, although its effect independent of habitat variation is negligible. The best predictors for species richness were bioclimatic classifications. Separate and combined effects of macro-environmental gradients (soil and climate), vegetation structure and leaf litter type are important determinants of richness. A model including both macro- and micro-environmental variables explained nearly 60% of tardigrade species richness in micro-scale plots. Abundance was significantly related only to soil composition and leaf litter type. Tardigrade abundance was not explained by macro-environmental gradients analysed here, despite a significant correlation between abundance and richness.

Keywords

Altitude Climate Diversity gradients Iberian Peninsula Leaf litter Soil Tardigrada communities Vegetation structure Abundance Scale 

Notes

Acknowledgements

We thank Brad Hawkins, Diego Fontaneto, Dean Anderson, and several anonymous referees for their comments, suggestions and discussion which have improved greatly this paper. NG was supported during field and taxonomic work by the National Museum of Natural History (CSIC) and by the Madrid Government grant and project number: 07M/0125/2000; during writing and analysing processes she hold a Fulbright postdoctoral fellowship financed by the Ministry of Education and Science of the Spanish Government (BOE/21/05/2005) at Harvard University (Department of Organismics and Evolutionary Biology), and currently holds a postdoctoral Marie Curie fellowship in the Zoological Museum at University of Copenhagen. JH was supported by a Portuguese FCT postdoctoral grant (BPD/20809/2004), and obtained additional support from the UK Natural Environment Research Council. This work has been partially supported by the Madrid Government project number GR/AMB/0750/2004.

References

  1. Allué Andrade JL (1990) Atlas Fitoclimático de España. Taxonomías. Ministerio de Agricultura, Pesca y Alimentación. Instituto Nacional de Investigaciones Agrarias, MadridGoogle Scholar
  2. Austin MP, Pausas JG, Nicholls AO (1996) Patterns of tree species richness in relation to environment in southeastern New South Wales, Australia. Aust J Ecol 21:154–164. doi: 10.1111/j.1442-9993.1996.tb00596.x CrossRefGoogle Scholar
  3. Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. van Stockum and Zoon, The HagueGoogle Scholar
  4. Bartǒs E (1939) Die Tardigraden der Tschechoslowa kischen Republik. Zool Anz 125:138–142Google Scholar
  5. Beasley CW (1988) Altitudinal distribution of Tardigrada of New Mexico with the description of a new species. Am Midl Nat 120:436–440. doi: 10.2307/2426016 CrossRefGoogle Scholar
  6. Bertrand M (1975) Répartition des tardigrades “terrestres” dans le massif de L’Aigoual. Vie milieu C Biol Te XXV: 283–298Google Scholar
  7. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi: 10.2307/1940179 CrossRefGoogle Scholar
  8. Catterall CP, Piper SD, Bunn SE, Arthur JM (2001) Flora and fauna assemblages vary with local topography in a subtropical eucalypt forest. Austral Ecol 26:56–69. doi: 10.1046/j.1442-9993.2001.01074.x CrossRefGoogle Scholar
  9. Chefaoui RM, Hortal J, Lobo JM (2005) Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biol Conserv 122:327–338. doi: 10.1016/j.biocon.2004.08.005 CrossRefGoogle Scholar
  10. Clark Labs (2000) Global change data archive: 1 km global elevation model, vol 3. CD-Rom, Clark UniversityGoogle Scholar
  11. Clark Labs (2001) Idrisi 32 Release 2. GIS software package. Clark Labs, Worcester, MAGoogle Scholar
  12. Collins M, Bateman L (2001) The ecological distribution of tardigrades in Newfoundland. Zool Anz 240:291–297. doi: 10.1078/0044-5231-00036 CrossRefGoogle Scholar
  13. Crawley MJ (1993) GLIM for Ecologists. Blackwell Scientific PublicationsGoogle Scholar
  14. Dastych H (1980) Macrobiotus kurasi sp. nov., a new specie of Tardigrada from Mountains of Uganda. B Acad Pol Sci Biol XXVII:653–657Google Scholar
  15. Dastych H (1985) West Spitsbergen Tardigrada. Acta Zool Cracov 28:169–214Google Scholar
  16. Dastych H (1987) Altitudinal distribution of Tardigrada in Poland. Sel Sym Monogr UZI 1:159–176Google Scholar
  17. Dastych H (1988) The Tardigrada in Poland. Monogr Faun Pol 16:1–255Google Scholar
  18. Dewel RA, Nelson DR, Dewel WC (1993) Tardigrada. In: Harrison FW, Rice ME (eds) Microscopic anatomy of invertebrates. Vol. 12. Onychophora, Chilopoda and Lesser Protostomata. Wiley-Liss Inc., New York, pp 143–183Google Scholar
  19. Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64. doi: 10.1046/j.1466-822X.2003.00322.x CrossRefGoogle Scholar
  20. EEA (2000) NATLAN. Nature/land cover information package. European Environment Agency, LuxembourgGoogle Scholar
  21. Ekschmitt K, Bakonyi G, Bongers M, Bongers T, Boström S, Dogan H, Harrison A, Nagy P, O’Donnell AG, Papatheodorou EM, Sohlenius B, Stamou GP, Wolters V (2001) Nematode community structure as indicator of soil functioning in European grassland soils. Eur J Soil Biol 37:263–268. doi: 10.1016/S1164-5563(01)01095-0 CrossRefGoogle Scholar
  22. FAO (1988) Soil map of the World. FAO/UNESCO, RomeGoogle Scholar
  23. Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience 54:777–784. doi: 10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2 CrossRefGoogle Scholar
  24. Fontaneto D, Ricci C (2006) Spatial gradients in species diversity of microscopic animals: the case of bdelloid rotifers at high altitude. J Biogeogr 33:1305–1313. doi: 10.1111/j.1365-2699.2006.01502.x CrossRefGoogle Scholar
  25. Fontaneto D, Melone G, Ricci C (2005) Connectivity and nestedness of the meta-community structure of moss dwelling bdelloid rotifers along a stream. Hydrobiologia 542:131–136. doi: 10.1007/s10750-004-5495-6 CrossRefGoogle Scholar
  26. Fontaneto D, Ficetola GF, Ambrosini R, Ricci C (2006) Patterns of diversity in microscopic animals: are they comparable to those in protists or in larger animals? Glob Ecol Biogeogr 15:153–162. doi: 10.1111/j.1466-822X.2006.00193.x CrossRefGoogle Scholar
  27. Fontaneto D, Barraclough TG, Chen K, Ricci C, Herniou EA (2008) Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Mol Ecol 17:3136–3146. doi: 10.1111/j.1365-294X.2008.03806.x PubMedCrossRefGoogle Scholar
  28. Franco Múgica F, García Antón M, Sainz Ollero H (1998) Vegetation dynamics and human impact in the Sierra de Guadarrama, Central System, Spain. Holocene 8:69–82. doi: 10.1191/095968398675691171 CrossRefGoogle Scholar
  29. Gamma Design (2001) GS+ Geostatistics for the environmental sciences. Version 5.1.1. Gamma Design Software. Plainwell, Michigan, USAGoogle Scholar
  30. Goeze JAE (1773) Herrn Karl Bonnets Abhandlungen aus der Insektologie. HalleGoogle Scholar
  31. Guidetti R, Bertolani R (2005) Tardigrade taxonomy: an update check list of the taxa and a list of characters for their identification. Zootaxa 845:1–46Google Scholar
  32. Guidetti R, Bertolani R, Nelson DR (1999) Ecological and faunistic studies on tardigrades in leaf litter of Beach Forest. Zool Anz 238:215–223Google Scholar
  33. Guil N (2004) Los tardígrados terrestres de la Sierra de Guadarrama: diversidad, taxonomía y filogenia. PhD, Universidad Complutense de Madrid, MadridGoogle Scholar
  34. Guil N (2008) New records and within-species variability of Iberian tardigrades (Tardigrada), with comments on the species from the Echiniscus blumi-canadensis series. Zootaxa 1757:1–30Google Scholar
  35. Guil N, Guidetti R, Machordon A (2007) Observations on the ‘‘tenuis group’’ Eutardigrada, Macrobiotidae) and description of a new Macrobiotus species. J Nat Hist 41:2741–2755. doi: 10.1080/00222930701742637 CrossRefGoogle Scholar
  36. Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien E, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117. doi: 10.1890/03-8006 CrossRefGoogle Scholar
  37. Hortal J (2004) Selección y Diseño de Áreas Prioritarias de Conservación de la Biodiversidad mediante Sinecología. Inventario y modelización predictiva de la distribución de los escarabeidos coprófagos (Coleoptera, scarabaeoidea) de Madrid. PhD, Universidad Autónoma de Madrid: Madrid. 333 ppGoogle Scholar
  38. Hortal J (2008) Uncertainty and the measurement of terrestrial biodiversity gradients. J Biogeogr 35:1355–1356Google Scholar
  39. Hortal J, Lobo JM (2005) An ED-based protocol for the optimal sampling of biodiversity. Biodivers Conserv 14:2913–2947. doi: 10.1007/s10531-004-0224-z CrossRefGoogle Scholar
  40. Hortal J, Jiménez-Valverde A, Gómez JF, Lobo JM, Baselga A (2008a) Historical bias in biodiversity inventories affects the observed realized niche of the species. Oikos 117:847–858. doi: 10.1111/j.0030-1299.2008.16434.x CrossRefGoogle Scholar
  41. Hortal J, Rodríguez J, Nieto M, Lobo JM (2008b) Regional and environmental effects on the species richness of mammal assemblages. J Biogeogr 35:1202–1214. doi: 10.1111/j.1365-2699.2007.01850.x CrossRefGoogle Scholar
  42. ITGE (1988) Atlas Geocientífico y del Medio Natural de la Comunidad de Madrid. Instituto Tecnológico GeoMinero de España, MadridGoogle Scholar
  43. Ito M (1999) Ecological distribution, abundance, and habitat preference of terrestrial Tardigrades in various forest on the northern slope of Mt Fuji, central Japan. Zool Anz 238:225–234Google Scholar
  44. Kathman RD, Cross SF (1991) Ecological distribution of moss-dwelling tardigrades on Vancouver island, British Columbia, Canada. Can J Zool 69: 122–129Google Scholar
  45. Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644PubMedCrossRefGoogle Scholar
  46. Lawton JH, Macgarvin M, Heads PA (1987) Effects of altitude on the abundance and species richness of insect herbivores on Bracken. J Anim Ecol 56:147–160. doi: 10.2307/4805 CrossRefGoogle Scholar
  47. Legendre P, Legendre L (1998) Numerical ecology. Second English Edition. Elsevier, AmsterdamGoogle Scholar
  48. Lobo JM, Castro I, Moreno JC (2001) Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands. Biol J Linn Soc Lond 73:233–253. doi: 10.1111/j.1095-8312.2001.tb01360.x CrossRefGoogle Scholar
  49. Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671. doi: 10.1023/A:1008985925162 CrossRefGoogle Scholar
  50. MAPA (1986) Atlas Agroclimático Nacional de España. Ministerio de Agricultura Pesca y Alimentación, Dirección General de la Producción Agraria, Subdirección General de la Producción Vegetal, MadridGoogle Scholar
  51. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, LondonGoogle Scholar
  52. Nelson DR (1975) Ecological distribution of tardigrades on Roan Mountain, Tennessee, North Carolina. Mem Ist Ital Idrobiol “. Dott Marco Marchi 32(Suppl.): 225–276Google Scholar
  53. Nelson DR (1982) Developmental biology of the Tardigrada. In: Harrison F, Cowden R (eds) Developmental biology of freshwater invertebrates. Alan R. Liss, New YorkGoogle Scholar
  54. Nelson DR (1995) The hundred-year hibernation of the waterbear. Nat Hist 84:62–65Google Scholar
  55. Nelson DR, Kincer CJ, Williams TC (1987) Effects of habitat disturbances on aquatic tardigrade populations. Sel Sym Monogr UZI 1:141–153Google Scholar
  56. Nicholls AO (1989) How to make biological surveys go further with Generalised Linear Models. Biol Conserv 50:51–75. doi: 10.1016/0006-3207(89)90005-0 CrossRefGoogle Scholar
  57. Nichols PB (1999) The ecological distribution of the Tardigrada on Dugger Mountain (NE Alabama) with respect to seasonal and altitudinal variation, Jacksonville State University, Jacksonville, AB. 140 ppGoogle Scholar
  58. Nogués-Bravo D, Araújo MB, Romdal TS, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–220. doi: 10.1038/nature06812 PubMedCrossRefGoogle Scholar
  59. Rahbek C (2005) The role of spatial scale and the perception of large-scale species richness patterns. Ecol Lett 8:224–239. doi: 10.1111/j.1461-0248.2004.00701.x CrossRefGoogle Scholar
  60. Ramazzotti G, Maucci W (1983) II phylum Tardigrada. III edizione riveduta e aggiornata. Mem Ist Ital Idrobiol. Dott Marco Marchi 41:1–1012Google Scholar
  61. Richardson BA (1999) The bromeliad microcosm and the assessment of faunal diversity in a Neotropical forest. Biotropica 31:321–336. doi: 10.1111/j.1744-7429.1999.tb00144.x CrossRefGoogle Scholar
  62. Richardson BA, Richardson MJ, Scatena FN, McDowell WH (2000) Effects of nutrient availability and other elevational changes on bromeliad populations and their invertebrate communities in a humid tropical forest in Puerto Rico. J Trop Ecol 16:167–188. doi: 10.1017/S0266467400001346 CrossRefGoogle Scholar
  63. Richardson BA, Richardson MJ, Soto-Adames FN (2005) Separating the effects of forest type and elevation on the diversity of litter invertebrate communities in a humid tropical forest in Puerto Rico. J Anim Ecol 74:926–936. doi: 10.1111/j.1365-2656.2005.00990.x CrossRefGoogle Scholar
  64. Rivas-Martínez S (1987) Memoria del Mapa de Series de Vegetación de España. Ministerio de Agricultura, Pesca y Alimentación, MadridGoogle Scholar
  65. Rodríguez Roda J (1951) Algunos datos sobre la distribución de los tardígrados españoles. Bol Real Soc Esp Hist Nat Biol 49:75–83Google Scholar
  66. Rodríguez J, Hortal J, Nieto M (2006) An evaluation of the influence of environment and biogeography on community structure: the case of the Holarctic mammals. J Biogeogr 33:291–303. doi: 10.1111/j.1365-2699.2005.01397.x CrossRefGoogle Scholar
  67. Sohlenius B, Boström S, Jönsson KI (2004) Occurrence of nematodes, tardigrades and rotifers on ice-free areas in East Antarctica. Pedobiologia (Jena) 48:395–408. doi: 10.1016/j.pedobi.2004.06.001 CrossRefGoogle Scholar
  68. StatSoft I (2001) STATISTICA (data analysis software system). StatSoft, Inc., Tulsa, OKGoogle Scholar
  69. Utsugi K, Hiraoka T, Nunomura N (1997) On the relations between tardigrade fauna and bryophyte flora in Toyama Prefecture. Bull Toyama Sci Mus 20:57–71Google Scholar
  70. Wilson EO (2002) The future of life. Alfred A. Knopf, New YorkGoogle Scholar
  71. Zelenev VV, Berkelmans R, van Bruggen AHC, Bongers T, Semenov AM (2004) Daily changes in bacterial-feeding nematode populations oscillate with similar periods as bacterial populations after a nutrient impulse in soil. Appl Soil Ecol 26:93–106. doi: 10.1016/j.apsoil.2003.12.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Noemí Guil
    • 1
    Email author
  • Joaquín Hortal
    • 2
    • 3
  • Sara Sánchez-Moreno
    • 4
  • Annie Machordom
    • 3
  1. 1.Zoological Museum, Natural History MuseumUniversity of CopenhagenCopenhagenDenmark
  2. 2.NERC Centre for Population Biology, Division of BiologyImperial College LondonBerkshireUK
  3. 3.Departmento de Biodiversidad y Biología EvolutivaMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain
  4. 4.Departamento de Protección VegetalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain

Personalised recommendations