Landscape Ecology

, Volume 23, Issue 10, pp 1205–1217 | Cite as

Plant species response to urbanization: comparison of isolated woodland patches in two cities of North-Western France

  • Jeanne Vallet
  • Hervé Daniel
  • Véronique Beaujouan
  • Françoise Rozé
Research Article

Abstract

The effect of urbanization on species distribution has been extensively documented, but a main challenge in urban ecology is to better understand the factors causing different distributions among species in response to urbanization. Hence, this paper aims to compare the effects of urbanization on woodland plant assemblages in two cities and to describe species responses by using several indicators. The study was carried out in the cities of Angers and Rennes (North-Western France) where 11 isolated woodlands were surveyed along an urban–rural gradient in each city. Abundance data of spontaneous species were collected from 220 quadrats. The effect of land cover (within a 500 m buffer around each woodland) on species assemblages was investigated by Canonical Correspondence Analysis. Buildings and pavement areas were the most significant predictors of species composition, and the effect of location in Angers or Rennes appeared on the second axis. More than 60% of the most frequent plant species were indicator of urban or rural location and their preferences were similar in the two cities. These lists of urban and rural indicator species were compared with Ellenberg’s indicator values and two other indicators specific to forest environment. The species which grow preferentially in urban woodlands are species which are already known to be associated with recent forests rather than ancient forests; with hedgerows rather than woodlands. The opposite pattern was observed concerning rural species. Moreover, urban indicator species have higher optima for soil pH and soil nitrogen content than rural indicator species. Different characteristics and history of forest habitat—continuity of the forest land cover, linearity of the habitat, change in adjacent land cover and land use—could select the same species, and the responses of the latter might involve different preferences concerning soil alkalinity and nutrient status.

Keywords

Understory plant communities Anthropogenic activities Indicator species Ancient forest species Hedge habitat Ellenberg values 

Notes

Acknowledgments

We thank the three anonymous referees for helpful comments on the manuscript. The authors are very grateful to the “Conseil Général de Maine-et-Loire” for its financial support, J. Bernard and I. Besse for their help in collecting field data, R. Aguejdad, L. Hubert-Moy and “Angers Loire Métropole” for providing land cover data and A. Bouillon, J. Pithon-Rivallain for checking the English. We thank also J. Means and V. Infante for their helpful comments.

References

  1. Bastin L, Thomas CD (1999) The distribution of plant species in urban vegetation fragments. Landscape Ecol 14:493–507. doi:10.1023/A:1008036207944 CrossRefGoogle Scholar
  2. Benvenuti S (2004) Weed dynamics in the Mediterranean urban ecosystem: ecology, biodiversity and management. Weed Res 44:341–354. doi:10.1111/j.1365-3180.2004.00410.x CrossRefGoogle Scholar
  3. Blair R (2004) The effects of urban sprawl on birds at multiple levels of biological organization. Ecol Soc 9(5), art 2 available online from http://www.ecologyandsociety.org/vol9/iss5/art2
  4. Braun-Blanquet J (1965) Plant sociology, the study of plant communities. Hafner Publishing Company, New YorkGoogle Scholar
  5. Brunet J, Von Oheimb G (1998) Migration of vascular plants to secondary woodlands in southern Sweden. J Ecol 86:429–438. doi:10.1046/j.1365-2745.1998.00269.x CrossRefGoogle Scholar
  6. Clergeau P, Jokimäki J, Savard J-PL (2001) Are urban bird communities influenced by the bird diversity of adjacent landscapes? J Appl Ecol 38:1122–1134. doi:10.1046/j.1365-2664.2001.00666.x CrossRefGoogle Scholar
  7. Czech B, Krausman PR, Devers PK (2000) Economic associations among causes of species endangerment in the United States. Bioscience 50:593–601. doi:10.1641/0006-3568(2000)050[0593:EAACOS]2.0.CO;2 CrossRefGoogle Scholar
  8. Daniel H, Lecamp E (2004) Distribution of three indigenous fern species along a rural-urban gradient in the city of Angers, France. Urban For Urban Green 3:19–27. doi:10.1016/j.ufug.2004.04.001 CrossRefGoogle Scholar
  9. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  10. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1991) Zaigerwerte von Pflanzen in Mitteleuropa. Scr Geobotanica 18:1–248Google Scholar
  11. Florgard C (2000) Long-term changes in indigenous vegetation preserved in urban areas. Landsc Urban Plan 52:101–116. doi:10.1016/S0169-2046(00)00126-2 CrossRefGoogle Scholar
  12. Fudali E (1996) Distribution of bryophytes in various urban-use complexes of Szczecin (NW Poland). Fragmenta Floristica Geobotanica 41:717–745Google Scholar
  13. Germaine SS, Wakeling BF (2001) Lizard species distributions and habitat occupation along an urban gradient in Tucson, Arizona, USA. Biol Conserv 97:229–237. doi:10.1016/S0006-3207(00)00115-4 CrossRefGoogle Scholar
  14. Godefroid S, Koedam N (2003) Distribution pattern of the flora in a peri-urban forest: an effect of the city-forest ecotone. Landsc Urban Plan 65:169–185. doi:10.1016/S0169-2046(03)00013-6 CrossRefGoogle Scholar
  15. Godefroid S, Koedam N (2004) The impact of forest paths upon adjacent vegetation: effects of the path surfacing material on the species composition and soil compaction. Biol Conserv 119:405–419. doi:10.1016/j.biocon.2004.01.003 CrossRefGoogle Scholar
  16. Godefroid S, Koedam N (2007) Urban plant species patterns are highly driven by density and function of built-up areas. Landscape Ecol 22:1227–1239. doi:10.1007/s10980-007-9102-x CrossRefGoogle Scholar
  17. Groffman P, Pouyat RV, Cadenasso ML, Zipperer WC, Szlavecz K, Yesilonis ID, Band LE, Brush GS (2006) Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. For Ecol Manage 236:177–192. doi:10.1016/j.foreco.2006.09.002 CrossRefGoogle Scholar
  18. Guirado M, Pino J, Rodà F (2007) Comparing the role of site disturbance and landscape properties on understory species richness in fragmented periurban Mediterranean forests. Landscape Ecol 22:117–129. doi:10.1007/s10980-006-9009-y CrossRefGoogle Scholar
  19. Hahs AK, McDonell MJ (2006) Selecting independent measures to quantify Melbourne’s urban-rural gradient. Landsc Urban Plan 78:435–448. doi:10.1016/j.landurbplan.2005.12.005 CrossRefGoogle Scholar
  20. Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22. doi:10.1016/S0006-3207(99)00045-2 CrossRefGoogle Scholar
  21. Hill MO, Mountford JO, Roy DB, Bunce RGH (1999) Ellenberg’s indicator values for british plants. Technical annex. Institute of Terrestrial Ecology, Huntingdon, UKGoogle Scholar
  22. Hill MO, Roy DB, Thompson K (2002) Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J Appl Ecol 39:708–720. doi:10.1046/j.1365-2664.2002.00746.x CrossRefGoogle Scholar
  23. Honnay O, Endels P, Vereecken H, Hermy M (1999a) The role of patch area and habitat diversity in explaining native plant species richness in disturbed suburban forest patches in northern Belgium. Divers Distrib 5:129–141. doi:10.1046/j.1472-4642.1999.00047.x CrossRefGoogle Scholar
  24. Honnay O, Hermy M, Coppin P (1999b) Impact of habitat quality on forest plant species colonization. For Ecol Manage 115:157–170. doi:10.1016/S0378-1127(98)00396-X CrossRefGoogle Scholar
  25. Jacquemyn H, Butaye J, Hermy M (2001) Forest plant species richness in small, fragmented mixed deciduous forest patches: the role of area, time and dispersal limitation. J Biogeogr 28:801–812. doi:10.1046/j.1365-2699.2001.00590.x CrossRefGoogle Scholar
  26. Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21:192–199. doi:10.1016/j.tree.2005.12.006 PubMedCrossRefGoogle Scholar
  27. Kolb A, Diekmann M (2004) Effects of environment, habitat configuration and forest continuity on the distribution of forest plant species. J Veg Sci 15:199–208. doi:10.1658/1100-9233(2004)015[0199:EOEHCA]2.0.CO;2
  28. Kostel-Hughes F, Young TP, Carreiro MM (1998) Forest leaf litter quantity and seedling occurrence along an urban-rural gradient. Urban Ecosyst 2:263–278. doi:10.1023/A:1009536706827 CrossRefGoogle Scholar
  29. Kowarik I (2005) Wild urban woodlands: towards a conceptual framework. In: Kowarik I, Körner S (eds) Wild urban woodlands. Springer-Verlag Berlin, BerlinGoogle Scholar
  30. Lambinon J, Delvosalle L, Duvigneaud J (1992) Nouvelle Flore de la Belgique, du Grand-Duché du Luxembourg, du Nord de la France et des régions voisines (Ptéridophytes et Spermaphytes). Jardin Botanique national de Belgique, MeiseGoogle Scholar
  31. Malmivaara M, Löfström I, Vahna-majamaa I (2002) Anthropogenic effects on understorey vegetation in Myrtillus type urban forests in Southern Finland. Silva Fenn 36:367–381Google Scholar
  32. McCollin D, Jackson JI, Bunce RGH, Barr CJ, Stuart R (2000) Hedgerows as habitat for woodland plants. J Environ Manage 60:77–90. doi:10.1006/jema.2000.0363 CrossRefGoogle Scholar
  33. McCune B, Mefford MJ (1999) PC-ORD 4.25: multivariate analysis of ecological data. MjM Software, Gleneden Beach, U.S.AGoogle Scholar
  34. McDonnell MJ, Hahs AK (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landscape Ecol. doi:10.1007/s10980-008-9253-4 Google Scholar
  35. McDonnell MJ, Pickett STA, Groffman P, Bohlen P, Pouyat RV, Zipperer WC, Parmelee RW, Carreiro MM, Medley K (1997) Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst 1:21–36. doi:10.1023/A:1014359024275 CrossRefGoogle Scholar
  36. McIntyre NE, Knowles-Yanez K, Hope D (2000) Urban ecology as an interdisciplinary field: differences in the use of “urban” between the social and natural sciences. Urban Ecosyst 4:5–24. doi:10.1023/A:1009540018553 CrossRefGoogle Scholar
  37. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. doi:10.1016/j.biocon.2005.09.005 CrossRefGoogle Scholar
  38. METEO-FRANCE Ouest D.E. (2007) Bilan climatologique de l’année 2006 sur le Nord-Ouest de la FranceGoogle Scholar
  39. Millard A (2004) Indigenous and spontaneous vegetation: their relationship to urban development in the city of Leeds, UK. Urban For Urban Green 3:39–47. doi:10.1016/j.ufug.2004.04.004 CrossRefGoogle Scholar
  40. Pouyat RV, Yesilonis ID, Russell-Anelli J, Neerchal NK (2007) Soil chemical and physical properties that differentiate urban land-use and cover types. Soil Sci Soc Am J 71:1010–1019Google Scholar
  41. Rameau JC, Mansion D, Dumé G (1994) Flore forestière française: guide écologique illustré. vol 1: Plaines et collines. Institut pour le développement forestier, Dijon-QuetignyGoogle Scholar
  42. Rooney TP, Wiegmann SM, Rogers DA, Waller DM (2004) Biotic impoverishment and homogenization in unfragmented forest understory communities. Conserv Biol 18:787–798. doi:10.1111/j.1523-1739.2004.00515.x CrossRefGoogle Scholar
  43. Roy DB, Hill MO, Rothery P (1999) Effects of urban land cover on the local species pool in Britain. Ecography 22:507–517Google Scholar
  44. Roy V, Blois Sd (2006) Using functional traits to assess the role of hedgerow corridors as environmental filters for forest herbs. Biol Conserv 130:592–603. doi:10.1016/j.biocon.2006.01.022 CrossRefGoogle Scholar
  45. Sadler JP, Small EC, Fiszpan H, Telfer MG, Niemela J (2006) Investigating environmental variation and landscape characteristics of an urban-rural gradient using woodland carabid assemblages. J Biogeogr 33:1126–1138. doi:10.1111/j.1365-2699.2006.01476.x CrossRefGoogle Scholar
  46. Ter Braak CJF, Smilauer P (2002) CANOCO Reference Manual and CANODRAW for Windows User’s Guide version 4.5. Microcomputer Power, Ithaca, NYGoogle Scholar
  47. Ter Braak CJF, Smilauer P (2004) Canoco for Windows 4.53. Biometris, Wageningen, The NetherlandsGoogle Scholar
  48. Vellend M, Verheyen K, Jacquemyn H, Kolb A, Calster HV, Peterken G, Hermy M (2006) Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87:542–548. doi:10.1890/05-1182 PubMedCrossRefGoogle Scholar
  49. Verheyen K, Hermy M (2004) The relative importance of dispersal limitation of vascular plants in secondary forest succession in Muizen Forest, Belgium. J Ecol 89:829–840. doi:10.1046/j.0022-0477.2001.00596.x CrossRefGoogle Scholar
  50. Vojta J (2007) Relative importance of historical and natural factors influencing vegetation of secondary forests in abandoned villages. Preslia 79:223–244Google Scholar
  51. Wania A, Kühn I, Klotz S (2006) Plant richness patterns in agricultural and urban landscapes in Central Germany—spatial gradients of species richness. Landsc Urban Plan 75:97–110. doi:10.1016/j.landurbplan.2004.12.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jeanne Vallet
    • 1
  • Hervé Daniel
    • 1
  • Véronique Beaujouan
    • 1
  • Françoise Rozé
    • 2
  1. 1.Agrocampus Ouest, Centre d’AngersInstitut National d’Horticulture et de PaysageAngers Cedex 01France
  2. 2.Université de Rennes 1Rennes CedexFrance

Personalised recommendations