Landscape Ecology

, 23:787 | Cite as

Spatial spread of an alien tree species in a heterogeneous forest landscape: a spatially realistic simulation model

  • Emmanuelle Sebert-Cuvillier
  • Valérie Simon-Goyheneche
  • Frédéric Paccaut
  • Olivier Chabrerie
  • Olivier Goubet
  • Guillaume DecocqEmail author
Research Article


The effect of environmental heterogeneity on spatial spread of invasive species has received little attention in the literature. Altering landscape heterogeneity may be a suitable strategy to control invaders in man-made landscapes. We use a population-based, spatially realistic matrix model to explore mechanisms underlying the observed invasion patterns of an alien tree species, Prunus serotina Ehrh., in a heterogeneous managed forest. By altering several parameters in the simulation, we test for various hypotheses regarding the role of several mechanisms on invasion dynamics, including spatial heterogeneity, seed dispersers, site of first introduction, large-scale natural disturbances, and forest management. We observe that landscape heterogeneity makes the invasion highly directional resulting from two mechanisms: (1) irregular jumps, which occur rarely via long-distance dispersers and create new founder populations in distant suitable areas, and (2) regular, continuous diffusion toward adjacent cells via short- and mid-distance vectors. At the landscape scale, spatial heterogeneity increases the invasion speed but decreases the final invasion extent. Hence, natural disturbances (such as severe storms) appear to facilitate invasion spread, while forest management can have contrasting effects such as decreasing invasibility at the stand scale by increasing the proportion of light interception at the canopy level. The site of initial introduction influences the invasion process but without altering the final outcome. Our model represents the real landscape and incorporates the range of dispersal modes, making it a powerful tool to explore the interactions between environmental heterogeneity and invasion dynamics, as well as for managing plant invaders.


Compiègne forest (France) Connectivity Disturbance Environmental heterogeneity Forest management Invasibility Long-distance dispersal Prunus serotina Population-based matrix model Resource availability 



We thank Marie Pairon (Université catholique de Louvain) for her help in parameterizing the model and Jérôme Jaminon (Office National des Forêts) for facilities during field data collection. We also thank Kirk Moloney, David Richardson and the three anonymous referees for their helpful comments on the initial manuscript, and Sharon Stanton for having reviewed the English writing. This study was financially supported by the French ‘Ministère de l’Ecologie et du Développement Durable’ (INVABIO II program, CR No. 09-D/2003).

Supplementary material

10980_2008_9237_MOESM1_ESM.doc (279 kb)
(DOC 279 kb)


  1. Buckley YM, Briese DT, Rees M (2003) Demography and management of the invasive plant species Hypericum perforatum. II. Construction and use of an individual-based model to predict population dynamics and the effects of management strategies. J Appl Ecol 40:494–507. doi: 10.1046/j.1365-2664.2003.00822.x CrossRefGoogle Scholar
  2. Cannas SA, Marco DE, Paez SA (2003) Modelling biological invasions: species traits, species interactions, and habitat heterogeneity. Math Biosci 183:93–110. doi: 10.1016/S0025-5564(02)00213-4 PubMedCrossRefGoogle Scholar
  3. Cannas SA, Marco DE, Montemurro MA (2006) Long range dispersal and spatial pattern formation in biological invasions. Math Biosci 203:155–170. doi: 10.1016/j.mbs.2006.06.005 PubMedCrossRefGoogle Scholar
  4. Chabrerie O, Hoeblich H, Decocq G (2007a) Déterminisme et conséquences écologiques de la dynamique invasive du cerisier tardif (Prunus serotina Ehrh.) sur les communautés végétales de la forêt de Compiègne. Acta Bot Gallica 154:383–394Google Scholar
  5. Chabrerie O, Roulier F, Hoeblich H, Sebert E, Closset-Kopp D, Leblanc I et al (2007b) Defining patch mosaic functional types to predict invasion patterns in a forest landscape. Ecol Appl 17:464–481. doi: 10.1890/06-0614 PubMedCrossRefGoogle Scholar
  6. Chabrerie O, Verheyen K, Saguez R, Decocq G (2008) Disentangling relationships between habitat conditions, disturbance history, plant diversity and American Black cherry (Prunus serotina Ehrh.) invasion in a European temperate forest. Divers Distrib 14:204–212. doi: 10.1111/j.1472-4642.2007.00453.x Google Scholar
  7. Clark JS, Fastie C, Hurtt G, Jackson ST, Johnson C, King GA et al (1998) Reid’s paradox of rapid plant migration. Bioscience 48:13–24. doi: 10.2307/1313224 CrossRefGoogle Scholar
  8. Closset-Kopp D, Chabrerie O, Valentin B, Delachapelle H, Decocq G (2007) When Oskar meets Alice: does a lack of trade-off in r/K-strategies make Prunus serotina a successful invader of European forests? For Ecol Manage 247:120–130. doi: 10.1016/j.foreco.2007.04.023 CrossRefGoogle Scholar
  9. Davies KF, Chesson P, Harrison S, Inouye BD, Melbourne BA, Rice KJ (2005) Spatial heterogeneity explains the scale dependence of the native-exotic diversity relationship. Ecology 86:1602–1610. doi: 10.1890/04-1196 CrossRefGoogle Scholar
  10. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–536. doi: 10.1046/j.1365-2745.2000.00473.x CrossRefGoogle Scholar
  11. Deckers B, Verheyen K, Hermy M, Muys B (2005) Effects of landscape structure on the invasive spread of black cherry Prunus serotina in an agricultural landscape in Flanders, Belgium. Ecography 28:99–109. doi: 10.1111/j.0906-7590.2005.04054.x CrossRefGoogle Scholar
  12. Drake JM, Lodge DM (2006) Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol Invasions 8:365–375. doi: 10.1007/s10530-004-8122-6 CrossRefGoogle Scholar
  13. Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59. doi: 10.1046/j.1523-1739.1994.08010050.x CrossRefGoogle Scholar
  14. Franklin JF, Forman RTT (1987) Creating landscape patterns by forest cutting: ecological consequences and principles. Landsc Ecol 1:5–18. doi: 10.1007/BF02275261 CrossRefGoogle Scholar
  15. Garnier A, Lecomte J (2006) Using a spatial and stage-structured invasion model to assess the spread of feral populations of transgenic oilseed rape. Ecol Modell 194:141–149. doi: 10.1016/j.ecolmodel.2005.10.009 CrossRefGoogle Scholar
  16. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  17. Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A et al (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101. doi: 10.1111/j.1461-0248.2004.00687.x CrossRefGoogle Scholar
  18. Higgins SI, Richardson DM (1996) A review of models of alien plant spread. Ecol Modell 87:249–265. doi: 10.1016/0304-3800(95)00022-4 CrossRefGoogle Scholar
  19. Higgins SI, Richardson DM (1998) Pine invasions in the southern hemisphere: modelling interactions between organism, environment and disturbance. Plant Ecol 135:79–93. doi: 10.1023/A:1009760512895 CrossRefGoogle Scholar
  20. Higgins SI, Richardson DM, Cowling RM (2000) Using a dynamic landscape model for planning the management of alien plant invasions. Ecol Appl 10:1833–1848. doi: 10.1890/1051-0761(2000)010[1833:UADLMF]2.0.CO;2 CrossRefGoogle Scholar
  21. Johnstone IM (1986) Plant invasion windows: a time based classification of invasion potential. Biol Rev Camb Philos Soc 61:369–394. doi: 10.1111/j.1469-185X.1986.tb00659.x CrossRefGoogle Scholar
  22. Kot M, Lewis M, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042. doi: 10.2307/2265698 CrossRefGoogle Scholar
  23. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasion. Trends Ecol Evol 20:223–228. doi: 10.1016/j.tree.2005.02.004 PubMedCrossRefGoogle Scholar
  24. Lodge DM (1993) Biological invasions: lessons for ecology. Trends Ecol Evol 8:133–137. doi: 10.1016/0169-5347(93)90025-K CrossRefGoogle Scholar
  25. Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL et al (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94. doi: 10.1111/j.1461-0248.2006.00987.x PubMedCrossRefGoogle Scholar
  26. Nathan R, Sapir N, Trakhtenbrot A, Katul GG, Bohrer G, Otte M et al (2005) Long-distance biological transport processes through the air: can nature’s complexity be unfolded in silico?. Divers Distrib 11:131–137. doi: 10.1111/j.1366-9516.2005.00146.x CrossRefGoogle Scholar
  27. Neubert GN, Kot M, Lewis MA (2000) Invasion speeds in fluctuating environments. Proc R Soc Lond B Biol Sci 267:1603–1610. doi: 10.1098/rspb.2000.1185 CrossRefGoogle Scholar
  28. Pairon M, Jonard M, Jacquemart AL (2006) Modeling seed dispersal of black cherry (Prunus serotina Ehrh.) an invasive tree: how microsatellites may help? Can J Res 36:1385–1394. doi: 10.1139/X06-018 CrossRefGoogle Scholar
  29. Pimentel DL, Lach L, Zuniga R, Morisson D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65. doi: 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2 CrossRefGoogle Scholar
  30. Pulliam HR, Dunning JB (1995) Spatially explicit population models. Ecol Appl 5:3–11. doi: 10.2307/1942044 CrossRefGoogle Scholar
  31. Richardson DM, Pyšek P (2006) Plant invasions—merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431. doi: 10.1191/0309133306pp490pr CrossRefGoogle Scholar
  32. Sebert-Cuvillier E, Paccaut F, Chabrerie O, Endels P, Goubet O, Decocq G (2007) Local population dynamics of an invasive tree species with a complex life-history cycle: a stochastic matrix model. Ecol Modell 201:127–143. doi: 10.1016/j.ecolmodel.2006.09.005 CrossRefGoogle Scholar
  33. Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, OxfordGoogle Scholar
  34. Snyder RE, Chesson P (2003) Local dispersal can facilitate coexistence in the presence of permanent spatial heterogeneity. Ecol Lett 6:301–309. doi: 10.1046/j.1461-0248.2003.00434.x CrossRefGoogle Scholar
  35. Söndgerath D, Schröder B (2002) Population dynamics and habitat connectivity affecting the spatial spread of populations. A simulation study. Landsc Ecol 17:57–70. doi: 10.1023/A:1015237002145 CrossRefGoogle Scholar
  36. Starfinger U (1991) Population biology of an invading tree species-Prunus serotina. In: Seitz A, Loeschcke V (eds) Species conservation: a population-biological approach. Birkhaüser Verlag, Basel, pp 171–184Google Scholar
  37. Starfinger U (1997) Introduction and naturalization of Prunus serotina in Central Europe. In: Brock JH, Wade M, Pyšek P, Green D (eds) Plant invasions: studies from North America and Europe. Backhuys Publishers, Leiden, pp 161–171Google Scholar
  38. Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Nat Acad Sci USA 98:1095–1100. doi: 10.1073/pnas.98.3.1095 PubMedCrossRefGoogle Scholar
  39. Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19. doi: 10.1034/j.1600-0706.2000.900102.x CrossRefGoogle Scholar
  40. Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181. doi: 10.1111/j.1366-9516.2005.00156.x CrossRefGoogle Scholar
  41. Verheyen K, Vanhellemont M, Stock T, Hermy M (2007) Predicting patterns of invasion by black cherry (Prunus serotina Ehrh.) in Flanders (Belgium) and its impact on the forest understorey community. Divers Distrib 13:487–497. doi: 10.1111/j.1472-4642.2007.00334.x CrossRefGoogle Scholar
  42. Westerberg L, Wennergren U (2003) Predicting the spatial distribution of a population in a heterogeneous landscape. Ecol Modell 166:53–65. doi: 10.1016/S0304-3800(03)00118-2 CrossRefGoogle Scholar
  43. Westerberg L, Östman Ö, Wennergren U (2005) Movement effects on equilibrium distributions of habitat generalists in heterogeneous landscapes. Ecol Modell 188:432–447. doi: 10.1016/j.ecolmodel.2005.02.004 CrossRefGoogle Scholar
  44. Williamson M (1999) Invasions. Ecography 22:5–12. doi: 10.1111/j.1600-0587.1999.tb00449.x CrossRefGoogle Scholar
  45. Wilson JRU, Richardson DM, Rouget M, Proches S, Amis MA, Henderson L et al (2007) Residence time and potential range: crucial considerations in modelling plant invasions. Divers Distrib 13:11–22. doi: 10.1111/j.1366-9516.2006.00302.x Google Scholar
  46. With KA (2002) The landscape ecology of invasive spread. Conserv Biol 151:1192–1203. doi: 10.1046/j.1523-1739.2002.01064.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Emmanuelle Sebert-Cuvillier
    • 1
    • 2
  • Valérie Simon-Goyheneche
    • 1
    • 2
  • Frédéric Paccaut
    • 2
  • Olivier Chabrerie
    • 1
  • Olivier Goubet
    • 2
  • Guillaume Decocq
    • 1
    Email author
  1. 1.Dynamiques des Systèmes AnthropisésUniversité de Picardie Jules VerneAmiens CedexFrance
  2. 2.Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées (UMR 6140 CNRS)Université de Picardie Jules VerneAmiens CedexFrance

Personalised recommendations