Landscape Ecology

, Volume 23, Issue 1, pp 91–105 | Cite as

Using the landscape morphometric context to resolve spatial patterns of submerged macrophyte communities in a fluvial lake

  • Rosalie LéonardEmail author
  • Pierre Legendre
  • Martin Jean
  • André Bouchard
Research Article


This study investigates the spatial heterogeneity of macrophyte communities in a fluvio-lacustrine landscape. We analysed the importance of the geomorphological point/bay pattern in structuring aquatic plant assemblages inside a 20-km-long littoral segment of a large fluvial lake. The abundance of 21 macrophyte species was surveyed in 232 quadrats along 24 transects perpendicular to the lakeshore. Two contrasting plant communities were identified, corresponding to the bay and point morphology of the study zone: a bay community characterized by Chara sp. and a point community dominated by Butomus umbellatus f. vallisneriifolius, Vallisneria americana, Potamogeton richardsonii and Myriophyllum sp. We subsequently investigated the spatial patterns within the bay and point communities. From a dataset containing local environmental variables, landscape morphometric descriptors, and spatial geographical positions of the sampling sites, variation partitioning of the species abundance table showed that more than two-thirds of the explained variation was spatially structured. Around half of the spatially structured variation was due to the spatially structured environment. We identified important broad-scale patterns in the vegetation correlated to the local environmental variables, mainly depth and sediment richness. The remaining half of the spatially structured variation in the aquatic plant communities was explained by the landscape morphometric context; shoreline complexity of the bay or point, relative width, duration of wind exposure, and fetch were the landscape descriptors explaining most of this variation. Our results indicate that the landscape morphometric context can resolve as much spatial patterning as environmental variables and should be considered when studying a large lake ecosystem.


Lake Saint-François St. Lawrence River Submerged macrophyte communities Variation partitioning Spatial patterns Landscape morphometric context 



We would like to thank the Centre Saint-Laurent team from Environment Canada, especially M. Arseneau, G. Brault, and C. Lessard for fieldwork. We thank M. Pelletier for advice on sediment analysis, V. Champagne for the particle-size analysis, and J. Lacey for enriching discussions concerning the project. We are also grateful to H. Wagner, J. Vermaat and an anonymous reviewer for their insightful comments which helped to improve the manuscript. This study was supported by a Natural Science and Engineering Research of Canada scholarship to R.L., by NSERC grants to A.B. and to P.L., and by CSL funds to M.J.


  1. Ali MM, Murphy KJ, Langendorff J (1999) Interrelations of river ship traffic with aquatic plants in the River Nile, Upper Egypt. Hydrobiologia 415:93–100CrossRefGoogle Scholar
  2. Allan JD, Johnson LB (1997) Catchment-scale analysis of aquatic ecosystems. Freshw Biol 37(1):107–111CrossRefGoogle Scholar
  3. Aznar JC, Dervieux A, Grillas P (2003) Association between aquatic vegetation and landscape indicators of human pressure. Wetlands 23:149–160CrossRefGoogle Scholar
  4. Barko JW, Smart RM (1986) Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology 67(5):1328–1340CrossRefGoogle Scholar
  5. Barko JW, Gunnison D, Carpenter SR (1991) Sediment interactions with submersed macrophyte growth and community dynamics. Aquat Bot 41:41–65CrossRefGoogle Scholar
  6. Bell SS, Fonseca MS (2006) Seagrass ecology: new contributions from a landscape perspective. In: Larkum AWD et al (eds) Seagrasses: biology, ecology and conservation. Springer, Netherlands, pp 625–645Google Scholar
  7. Blindow I (1992) Decline of charophytes during eutrophication: comparison with angiosperms. Freshw Biol 28:9–14CrossRefGoogle Scholar
  8. Borcard D, Legendre P (1994) Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environ Ecol Stat 1:37–61CrossRefGoogle Scholar
  9. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell 153:51–68CrossRefGoogle Scholar
  10. Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85(7):1826–1832CrossRefGoogle Scholar
  11. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  12. Bouchard A (2003) Marie-Victorin, témoin expert dans une cause sur un marécage du lac Saint-François, le Saint-Laurent. Le Naturaliste Canadien 127:11–21Google Scholar
  13. Carignan R, Lorrain S (2000) Sediment dynamics in the fluvial lakes of the St. Lawrence River: accumulation rates and characterization of the mixed sediment layer. Can J Fish Aquat Sci 57(Suppl 1):63–77CrossRefGoogle Scholar
  14. Chambers PA (1987) Light and nutrients in the control of aquatic plant community structure. II. In situ observations. J Ecol 75:621–628CrossRefGoogle Scholar
  15. Chambers PA, Kalff J (1987) Light and nutrients in the control of aquatic plant community structure. I. In situ experiments. J Ecol 75:611–619CrossRefGoogle Scholar
  16. Chambers PA, Prepas EE, Hamilton HR, Bothwell ML (1991) Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol Appl 1:249–257CrossRefGoogle Scholar
  17. Crow GE, Hellquist CB (2000a) Aquatic and wetland plants of northeastern North America: a revised and enlarged edition of Norman C. Fassett’s A Manual of Aquatic Plants. Volume one—pteridophytes, gymnosperms and angiosperms: dicotyledons. The University of Wisconsin Press, MadisonGoogle Scholar
  18. Crow GE, Hellquist CB (2000b) Aquatic and wetland plants of northeastern North America: a revised and enlarged edition of Norman C. Fassett’s A Manual of Aquatic Plants. Volume two—angiosperms: monocotyledons. The University of Wisconsin Press, MadisonGoogle Scholar
  19. Dahlgren JP, Ehrlén J (2005) Distribution patterns of vascular plants in lakes—the role of metapopulation dynamics. Ecography 28:49–58CrossRefGoogle Scholar
  20. Demars BOL, Harper DM (2005) Distribution of aquatic vascular plants in lowlands rivers: separating the effects of local environmental conditions, longitudinal connectivity and river basin isolation. Freshw Biol 50:418–437CrossRefGoogle Scholar
  21. Dray S (2004) packfor. R package version 0.0–6,∼dray/Software.html#packfor (accessed March 2006)
  22. Dray S (2006) spacemakeR: spatial modelling. R package version 0.0–3,∼dray/Software.html#spacemakeR (accessed June 2006)
  23. Duarte CM, Kalff J (1986) Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities. Limnol Oceanogr 31(5):1072–1080Google Scholar
  24. Duarte CM, Kalff J (1988) Influence of lake morphometry on the response of submerged macrophytes to sediment fertilization. Can J Fish Aquat Sci 45:216–221CrossRefGoogle Scholar
  25. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  26. Frenette M., Barbeau C, Verette J-Ls (1989) Aspects quantitatifs, dynamiques et qualitatifs des sédiments du Saint-Laurent. Hydrotech inc., préparé pour Environnement Canada et le Gouvernement du QuébecGoogle Scholar
  27. Gouvernement du Québec (1999) Ministère des ressources naturelles, Cazaville, Huntingdon, Saint-Anicet and Salaberry-de-Valleyfield [digitized map]. 1:20 000. MTM-zone 8, 31G01–200–0101, 0102, 0201, 0202. Québec : Direction de la cartographie topographiqueGoogle Scholar
  28. Håkanson L (1977) The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vanern, Sweden. Can J Earth Sci 14:397–412Google Scholar
  29. Håkanson L (1981) A manual of lake morphometry. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  30. Hudon C, Lalonde S, Gagnon P (2000) Ranking the effects of site exposure, plant growth form, water depth, and transparency on aquatic plant biomass. Can J Fish Aquat Sci 57(Suppl 1):31–42CrossRefGoogle Scholar
  31. Johnson RK, Ostrofsky ML (2004) Effects of sediment nutrients and depth on small-scale spatial heterogeneity of submersed macrophyte communities in Lake Pleasant, Pennsylvania. Can J Fish Aquat Sci 61:1493–1502CrossRefGoogle Scholar
  32. Kleeberg A, Jendritzki D, Nixdorf B (1999) Surficial sediment composition as a record of environmental changes in the catchment of shallow Lake Petersdorf, Brandenburg, Germany. Hydrobiologia 408/409:185–192CrossRefGoogle Scholar
  33. Kratz TK, Webster KE, Bowser CJ, Magnuson JJ, Benson BJ (1997) The influence of landscape position on lakes of northern Wisconsin. Freshw Biol 37:209–217CrossRefGoogle Scholar
  34. Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138CrossRefGoogle Scholar
  35. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  36. Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science B.V., AmsterdamGoogle Scholar
  37. Lepage S, Biberhofer J, Lorrain S (2000) Sediment dynamics and the transport of suspended matter in the upstream area of Lake St. Francis. Can J Fish Aquat Sci 57(Suppl 1):52–62CrossRefGoogle Scholar
  38. Lorrain S, Jarry V, Guertin K (1993) Répartition spatiale et évolution temporelle des biphényles polychlorés et du mercure dans les sédiments du lac Saint-François; 1979–1989. Centre Saint-Laurent, Environnement Canada, Montréal, QuébecGoogle Scholar
  39. Mackay SJ, Arthington AH, Kennard MJ, Pusey BJ (2003) Spatial variation in the distribution and abundance of submersed macrophytes in an Australian subtropical river. Aquat Bot 77:169–186CrossRefGoogle Scholar
  40. Magnuson JJ, Kratz TK (2000) Lakes in the landscape: approaches to regional limnology. Verh Internat Verein Limnol 27:74–87Google Scholar
  41. Mehlich A (1984) Mehlich III soil extractant: a modification of Mehlich II extractant. Commun Soil Sci Plant Anal 15(12):1409–1416CrossRefGoogle Scholar
  42. Messier G (1986) Rivière La Guerre: pré-étude environnementale. Rapport de Urgel Delisle et Associés. Pour le Ministère de l’agriculture, des pêcheries et de l’alimentation du QuébecGoogle Scholar
  43. Middelboe AL, Markager S (1997) Depth limits and minimum light requirements of freshwater macrophytes. Freshw Biol 37:553–568CrossRefGoogle Scholar
  44. Morin J, Boudreau P, Secretan Y, Leclerc M (2000) Pristine lake Saint-Francois, St.Lawrence River: hydrodynamic simulation and cumulative impact. J Great Lakes Res 26:384–401CrossRefGoogle Scholar
  45. Oksanen J, Kindt R, Legendre P, O’Hara RB (2006) vegan: Community Ecology Package version 1.8–2, (accessed January 2006)
  46. Palmer MA, Swan CM, Nelson K, Silver P, Alvestad R (2000) Streambed landscapes: evidence that stream invertebrates respond to the type and spatial arrangement of patches. Landsc Ecol 15:563–576CrossRefGoogle Scholar
  47. Palomäki R, Hellsten S (1996) Littoral macrozoobenthos biomass in a continuous habitat series. Hydrobiologia 339:85–92CrossRefGoogle Scholar
  48. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625PubMedCrossRefGoogle Scholar
  49. Pip E (1989) Water temperature and freshwater macrophyte distribution. Aquat Bot 34:367–373CrossRefGoogle Scholar
  50. R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, (accessed January 2006)
  51. Riera JL, Magnuson JJ, Kratz TK, Webster KE (2000) A geomorphic template for the analysis of lake districts applied to the Northern Highland Lake District, Wisconsin, USA Freshw Biol 43:301–318CrossRefGoogle Scholar
  52. Roberts DW (2006) labdsv: laboratory for dynamic synthetic vegephenomenology. R package version 1.2–2
  53. Rondeau B (1993) Qualité des eaux du fleuve Saint-Laurent/1985–1990/Tronçon Cornwall-Québec. Centre Saint-Laurent, Environnement Canada, Montréal, QuébecGoogle Scholar
  54. Sand-Jensen K (2003) Drag and reconfiguration of freshwater macrophytes. Freshw Biol 48:271–283CrossRefGoogle Scholar
  55. Sand-Jensen K (1989) Environmental variables and their effect on photosynthesis of aquatic plant communities. Aquat Bot 34:5–25CrossRefGoogle Scholar
  56. Sylvestre A (1989) Pertes d’usage du milieu aquatique dans le lac Saint-François. Direction de la qualité du milieu aquatique, Ministère de l’Environnement du QuébecGoogle Scholar
  57. Titus JE, Adams MS (1979) Coexistence and the comparative light relations of the submersed macrophytes Myriophyllum spicatum and Vallisneria americana. Michx Oecologia 40:273–286CrossRefGoogle Scholar
  58. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for Canonical Community Ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  59. Turner MG (2005) Landscape ecology in North America: past, present, and future. Ecology 86(8):1967–1974CrossRefGoogle Scholar
  60. Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice: pattern and processes. Springler-Verlag, New-YorkGoogle Scholar
  61. Van den Berg MS, Coops H, Simons J (2001) Propagule bank buildup of Chara aspera and its significance for colonization of a shallow lake. Hydrobiologia 462:9–17CrossRefGoogle Scholar
  62. Vestergaard O, Sand-Jensen K (2000) Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquat Bot 67:85–107CrossRefGoogle Scholar
  63. Wiens JA (2002) Riverine landscapes: taking landscape ecology into the water. Freshw Biol 47:501–515CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Rosalie Léonard
    • 1
    Email author
  • Pierre Legendre
    • 1
  • Martin Jean
    • 2
  • André Bouchard
    • 3
  1. 1.Département de sciences biologiquesUniversité de MontréalMontréalCanada
  2. 2.Centre Saint-Laurent, Environnement CanadaMontréalCanada
  3. 3.Institut de recherche en biologie végétaleUniversité de MontréalMontréalCanada

Personalised recommendations