Landscape Ecology

, Volume 22, Supplement 1, pp 89–101 | Cite as

Human landscapes have complex trajectories: reconstructing Peruvian Amazon landscape history from 1948 to 2005

  • Javier A. Arce-Nazario
Research Article


Long-term landscape history studies can probe the complexity of landscape dynamics that appear linear or determined by a single driver on shorter time scales, and may span variations of both human-initiated and naturally occurring drivers. With a variety of historical sources this study traces the history of landscape change in Amazonian communities that have existed since the early 1900’s, in a region comprising both upland and riverine ecosystems. Aerial photography from 1948, 1965 and 1977 and satellite images from 1993 to 2005 are analyzed to reconstruct spatial transformations of the study region. The reconstructed landscape history is analyzed as a result of shifts in economy, policy, local markets and river dynamics. In 1948, the upland region was used for agriculture and farms appeared to be encroaching into primary forest. However by 1965, 49% of the upland farm area had become secondary forest, as farmers left upland farms fallow and moved into the floodplain to farm crops promoted through agricultural credit programs. Between 1965 and 1977 river channel migration affected the riverine landscape, dramatic floods occurred throughout the Amazon River and many farmers migrated to the city. During the 1980’s the credit given to small farmers greatly increased, resulting in the highest density of farms in the landscape by 1993. The disappearance of these credits is reflected in reduced farming activity and increased charcoal production. The results show that agricultural activity and deforestation do not always have a simple trajectory of increment.


Amazon Deforestation Floodplain dynamics Landscape history Iquitos 



Special thanks to the families of the Panguana–Muyuy region who helped me throughout the project. The paper benefited from the comments of three anonymous reviewers. This study was partially supported by the NSF Dissertation Improvement Grant (# 0327293) and the Fulbright Fellowship. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the granting agencies.


  1. Arce-Nazario J (2006) Reconstructing Amazonian ecological memory: how rivers and humans shape the Peruvian Amazon landscape. Dissertation, Columbia UniversityGoogle Scholar
  2. Atarama Lonzoy A (1992) De Nativos a Ribereños: un recorrido a lo largo de su historia comunal. Servicio Holandés de Cooperación Técnica, LimaGoogle Scholar
  3. Banco Agrário del Perú (1990) Memoria. LimaGoogle Scholar
  4. Banco Agrícola del Perú (1931) Memoria. LimaGoogle Scholar
  5. Banco de Fomento Agropecuario del Perú (1943) Memoria 1942–1943 Ejercicio 11. LimaGoogle Scholar
  6. Banco de Fomento Agropecuario del Perú (1953) Memoria 1952–1953 Ejercicio 22. LimaGoogle Scholar
  7. Banco de Fomento Agropecuario del Perú (1954) Memoria 1953–1954 Ejercicio 23. LimaGoogle Scholar
  8. Banco de Fomento Agropecuario del Perú (1963) Memoria 1962–1963 Ejercicio 31. LimaGoogle Scholar
  9. Banco Industrial del Perú (1965) La industria del yute en el Perú: Parte 1. LimaGoogle Scholar
  10. Brondizio ES, Moran EF, Mausel P et al (1994) Land-use change in the Amazon estuary: patterns of Caboclo settlement and landscape management. Human Ecol. 22:249–278CrossRefGoogle Scholar
  11. Bunker S (1984) Modes of extraction, unequal exchange, and the progressive underdevelopment of an extreme periphery: the Brazilian Amazon, 1600–1980. Am J Soc 89:1017–1064CrossRefGoogle Scholar
  12. Chibnik M (1994) Risky rivers : the economics and politics of floodplain farming in Amazonia. University of Arizona Press, TucsonGoogle Scholar
  13. Coomes OT, Burt GJ (2001) Peasant charcoal production in the Peruvian Amazon: rainforest use and economic reliance. Forest Ecol Manage 140:39–50CrossRefGoogle Scholar
  14. Deadman P, Robinson D, Moran E et al (2004) Colonist household decision-making and land-use change in the Amazon Rainforest: an agent-based simulation. Environ Plan B-Plan Des 31:693–709CrossRefGoogle Scholar
  15. Dekroon H, Kalliola R (1995) Shoot dynamics of the giant grass Gynerium-sagittatum in Peruvian Amazon Floodplains, a clonal plant that does show self-thinning. Oecologia 101:124–131CrossRefGoogle Scholar
  16. Denslow J, Padoch C (1988) People of the tropical rain forest. UC Press, BerkeleyGoogle Scholar
  17. Ferraz SFD, Vettorazzi CA, Theobald DM et al (2005) Landscape dynamics of Amazonian deforestation between 1984 and 2002 in central Rondonia, Brazil: assessment and future scenarios. Forest Ecol Manage 204:67–83Google Scholar
  18. Grau HR, Aide TM, Zimmerman JK et al (2003) The ecological consequences of socioeconomic and land-use changes in postagriculture Puerto Rico. Bioscience 53:1159–1168CrossRefGoogle Scholar
  19. Hecht S, Cockburn A (1990) The fate of the forest: developers, destroyers and defenders of the Amazon. Harper Collins, New YorkGoogle Scholar
  20. Hecht SB, Kandel S, Gomes I et al (2006) Globalization, forest resurgence, and environmental politics in El Salvador. World Dev 34:308–323CrossRefGoogle Scholar
  21. Hernández T (1924) Historia de la fundación del pueblo de Tamishyacu provincia de Maynas Departamento de Loreto, IquitosGoogle Scholar
  22. Hiraoka M (1985) Mestizo subsistence in riparian Amazonia. Nat Geographic Res 1:236–246Google Scholar
  23. Hiraoka M (1986) Zonation of mestizo riverine farming systems in northeast Peru. Nat Geographic Res 2:354–371Google Scholar
  24. Hiraoka M (1992) Caboclo and rivereño resource management in Amazonia: a review. In: Redford KH, Padoch C (eds) Conservation of neotropical forests: working from traditional resource use. Columbia University Press, New YorkGoogle Scholar
  25. INEI. (1994) Censos Nacionales 1993: directorio nacional de centros poblados. INEI, LimaGoogle Scholar
  26. Junk W (ed) (1997) The Central-Amazonian Floodplain: ecology of a pulsing system. Springer Verlag, New YorkGoogle Scholar
  27. Kalliola R, Puhakka M, Danjoy W (1993) Amazonía Peruana: vegetación humeda tropical en el llano subandino. Gummerus Printing, FinlandGoogle Scholar
  28. Kalliola R, Salo J, Puhakka M et al (1991) New site formation and colonizing vegetation in primary succession on the western Amazon floodplains. J Ecol 79:877–901CrossRefGoogle Scholar
  29. Klepeis P, Turner BL (2001) Integrated land history and global change science: the example of the Southern Yucatan Peninsular Region project. Land Use Policy 18:27–39CrossRefGoogle Scholar
  30. Laurance WF, Albernaz AKM, Fearnside PM et al (2004) Deforestation in Amazonia. Science 304:1109–1109PubMedCrossRefGoogle Scholar
  31. Maki S, Kalliola R, Vuorinen K (2001) Road construction in the Peruvian Amazon: process, causes and consequences. Environ Conserv 28:199–214Google Scholar
  32. Messina JP, Walsh SJ (2001) 2.5D Morphogenesis: modeling landuse and landcover dynamics in the Ecuadorian Amazon. Plant Ecol 156:75–88CrossRefGoogle Scholar
  33. Nepstad DC, Verissimo A, Alencar A et al (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508CrossRefGoogle Scholar
  34. Padoch C, de Jong W (1990) Santa Rosa: the impact of the forest products trade on an Amazonian place and population. Adv Econ Bot 8:151–158Google Scholar
  35. Padoch C, de Jong W (1991) The house gardens of Santa-Rosa—diversity and variability in an Amazonian agricultural system. Econ Bot 45:166–175Google Scholar
  36. Padoch C, Inuma JC, de Jong W et al (1985) Amazonian agroforestry: a market-oriented system in Peru. Agrofor Syst 3:47–58CrossRefGoogle Scholar
  37. Pan WKY, Walsh SJ, Bilsborrow RE et al (2004) Farm-level models of spatial patterns of land use and land cover dynamics in the Ecuadorian Amazon. Agric EcosystEnviron 101:117–134CrossRefGoogle Scholar
  38. Pfaff ASP (1999) What drives deforestation in the Brazilian Amazon? Evidence from satellite and socioeconomic data. J Environ Econ Manage 37:26–43CrossRefGoogle Scholar
  39. Pinedo-Vasquez M, Barletti-Pasqualle J, Del Castillo Torres D et al (2002) A tradition of change: the dynamic relationship between biodiversity and society in sector Muyuy, Peru. Environ Sci Policy 5:43–53CrossRefGoogle Scholar
  40. Regan J (1983) Hacia la tierra sin mal: estudio de la region del pueblo en la Amazonía. Centro de Estudios Teológicos de la Amazonía, IquitosGoogle Scholar
  41. Rudel TK, Coomes OT, Moran E et al (2005) Forest transitions: towards a global understanding of land use change. Global Environ Change-Human Policy Dimen 15:23–31CrossRefGoogle Scholar
  42. Salo J, Kalliola R, Hakkinen I et al (1986) River dynamics and the diversity of Amazon lowland forest. Nature 322:254–258CrossRefGoogle Scholar
  43. San Roman J (1975) Perfiles historicos de la amazonía peruana. Centro de Estudios Teologicos de la Amazonía, LimaGoogle Scholar
  44. Santos-Granero F, Barclay F (2000) Tamed frontiers: economy, society, and civil rights in upper Amazonia. Westview Press, BoulderGoogle Scholar
  45. Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260:1905–1910PubMedCrossRefGoogle Scholar
  46. Stanfield ME (1998) Red rubber, bleeding trees: violence, slavery, and empire in northwest Amazonia, 1850–1933. University of New Mexico Press, AlbuquerqueGoogle Scholar
  47. Tuomisto H (1993) Clasificación de vegetación en la selva baja peruana. In: Kalliola R, Puhakka M, Danjoy W (eds) Amazonía peruana: vegetación húmeda tropical en el llano subandino. Gummerus Printing, Finland, pp 103–112Google Scholar
  48. Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71:437–449CrossRefGoogle Scholar
  49. Vormisto J, Svenning JC, Hall P et al (2004) Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. J Ecol 92:577–588CrossRefGoogle Scholar
  50. Winklerprins A (2002) Seasonal floodplain-upland migration along the lower Amazon River. Geograph Rev 92:415–431CrossRefGoogle Scholar
  51. Wittmann F, Junk WJ, Piedade MTF (2004) The varzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. Forest Ecol Manage 196:199–212CrossRefGoogle Scholar
  52. Wolf PR, DeWitt BA (2000) Elements of photogrammetry with applications in GIS. McGraw-Hill, New YorkGoogle Scholar
  53. Zarin DJ, Pereira VFG, Raffles H et al (2001) Landscape change in tidal floodplains near the mouth of the Amazon River. Forest Ecol Manage 154:383–393CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Division of Society & EnvironmentESPM, UC BerkeleyBerkeleyUSA

Personalised recommendations