Advertisement

Landscape Ecology

, Volume 22, Issue 6, pp 853–866 | Cite as

What you see is where you go? Modeling dispersal in mountainous landscapes

  • Roland F. GrafEmail author
  • Stephanie Kramer-Schadt
  • Néstor Fernández
  • Volker Grimm
Research Article

Abstract

Inter-patch connectivity can be strongly influenced by topography and matrix heterogeneity, particularly when dealing with species with high cognitive abilities. To estimate dispersal in such systems, simulation models need to incorporate a behavioral component of matrix effects to result in more realistic connectivity measures. Inter-patch dispersal is important for the persistence of capercaillie (Tetrao urogallus) in central Europe, where this endangered grouse species lives in patchy populations embedded in a mountainous landscape. We simulated capercaillie movements with an individual-based, spatially explicit dispersal model (IBM) and compared the resulting connectivity measure with distance and an expert estimation. We used a landscape comprising discrete habitat patches, temporary habitat, non-habitat forests, and non-habitat open land. First, we assumed that dispersing individuals have perfect knowledge of habitat cells within the perceptual range (null model). Then, we included constraints to perception and accessibility, i.e., mountain chains, open area and valleys (three sub-models). In a full model, all sub-models were included at once. Correlations between the different connectivity measures were high (Spearman’s ρ  >  0.7) and connectivity based on the full IBM was closer to expert estimation than distance. For selected cases, simple distance differed strongly from the full IBM measure and the expert estimation. Connectivity based on the IBM was strongly sensitive to the size of perceptual range with higher sensitivity for the null model compared to the full model that included context dependent perceptual ranges. Our heuristic approach is adequate for simulating movements of species with high cognitive abilities in strongly structured landscapes that influence perception and permeability.

Keywords

Connectivity Context-dependent perceptual range Individual-based model Inter-patch movement Spatially explicit Capercaillie Tetrao urogallus 

Notes

Acknowledgements

We thank Kurt Bollmann, Pierre Mollet, and Dominik Thiel for their expert estimation of connectivity between patches and Eric Gustafson and two anonymous reviewers for valuable comments on the manuscript. The Swiss Ornithological Institute and several local grouse experts provided us with large data-sets on capercaillie occurrence. This study received financial support from the Swiss National Science Foundation (SNF; grant number PBEZA-108909) and from the Helmholtz Centre for Environmental Research—UFZ (guest scientist’s grant to RFG).

References

  1. Alderman J, McCollin D, Hinsley SA, Bellamy PE, Picton P, Crockett R (2005) Modelling the effects of dispersal and landscape configuration on population distribution and viability in fragmented habitat. Landscape Ecol 20:857–870CrossRefGoogle Scholar
  2. Aspbury AS, Gibson RM (2004) Long-range visibility of greater sage grouse leks: a GIS-based analysis. Anim Behav 67:1127–1132CrossRefGoogle Scholar
  3. Bender DJ, Fahrig L (2005) Matrix structure obscures the relationship between interpatch movement and patch size and isolation. Ecology 86:1023–1033Google Scholar
  4. Bollmann K, Graf RF, Suter W (submitted) Assessing the influence of patch area, isolation and connectivity on predicting capercaillie occurrence in the Alps. Conserv BiolGoogle Scholar
  5. Epperson B (2003) Geographical genetics. Monographs in population biology 38. Princeton University Press, Princeton NJGoogle Scholar
  6. Fernandez N, Kramer-Schadt S, Thulke H (2006) Viability and risk assessment in species restoration: planning reintroductions for the wild boar, a potential disease reservoir. Ecol Soc 11:6 [online] URL:http://www.ecologyandsociety.org/vol11/iss1/art6/ Google Scholar
  7. Frank K, Wissel C (1998) Spatial aspects of metapopulation survival - from model results to rules of thumb for landscape management. Landscape Ecol 13:363–379CrossRefGoogle Scholar
  8. Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat models: capercaillie in the Swiss Alps. Landscape Ecol 20:703–717CrossRefGoogle Scholar
  9. Grimm V, Storch I (2000) Minimum viable population size of capercaillie Tetrao urogallus: results from a stochastic model. Wildlife Biol 6:219–225Google Scholar
  10. Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton, NJGoogle Scholar
  11. Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162CrossRefGoogle Scholar
  12. Hanski I, Kuussaari M, Nieminen M (1994) Metapopulation structure and migration in the butterfly melitaea cinxia. Ecology 75:747–762CrossRefGoogle Scholar
  13. Heinz SK, Conradt L, Wissel C, Frank K (2005) Dispersal behaviour in fragmented landscapes: deriving a practical formula for patch accessibility. Landscape Ecol 20:83–99CrossRefGoogle Scholar
  14. Hess GR (1996) Linking extinction to connectivity and habitat destruction in metapopulation models. Am Nat 148:226–236CrossRefGoogle Scholar
  15. Hjeljord O, Wegge P, Rolstad J, Ivanova M, Beshkarev AB (2000) Spring-summer movements of male capercaillie Tetrao urogallus: A test of the ’landscape mosaic’ hypothesis. Wildlife Biol 6:251–256Google Scholar
  16. Jacob G (2006) Conservation genetics of the capercaillie (Tetrao urogallus L.) in the Swiss Alps, PhD thesis, University of Zürich, ZürichGoogle Scholar
  17. Kitching R (1971) Simple simulation model of dispersal of animals among units of discrete habitats. Oecologia 7:95–116CrossRefGoogle Scholar
  18. Klaus S (1994) To survive or to become extinct: small populations of Tetraonids in Central Europe. In: Remmert H (ed) Minimum animal populations. Springer-Verlag, Berlin, pp 137–152Google Scholar
  19. Klaus S, Andreev AV, Bergmann H-H, Müller F, Porkert J, Wiesner J (1986). Die Auerhühner, 1st edn. A Ziemsen Verlag, Wittenberg Lutherstadt [In German]Google Scholar
  20. Klaus S, Bergmann H-H, Marti C, Müller F, Vitovic OA, Wiesner J (1990) Die Birkhühner: Tetrao tetrix und Tetrao mlokosiewiczi. A Ziemsen Verlag, Wittenberg Lutherstadt [In German]Google Scholar
  21. Koenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517CrossRefGoogle Scholar
  22. Koivisto I (1963) Über den Ortswechsel der Geschlechter beim Auerhuhn (Tetrao urogallus) nach Markierungsergebnissen. Die Vogelwarte 22:75–79 [In German]Google Scholar
  23. Kramer-Schadt S, Revilla E, Wiegand T, Breitenmoser U (2004) Fragmented landscapes, road mortality and patch connectivity: modelling influences on the dispersal of Eurasian lynx. J Appl Ecol 41:711–723CrossRefGoogle Scholar
  24. Levins RA (1970) Extinction. Lect Math Life Sci 2:75–107Google Scholar
  25. Lima SL, Zollner PA (1996) Towards a behavioral ecology of ecological landscapes. Trends Ecol Evol 11:131–135CrossRefGoogle Scholar
  26. Martin J, Nichols JD, Kitchens WM, Hines JE (2006) Multiscale patterns of movement in fragmented landscapes and consequences on demography of the snail kite in Florida. J Anim Ecol 75:527–539PubMedCrossRefGoogle Scholar
  27. Moilanen A, Hanski I (2001) On the use of connectivity measures in spatial ecology. Oikos 95:147–151CrossRefGoogle Scholar
  28. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145CrossRefGoogle Scholar
  29. Mollet P (2006) Nationaler Aktionsplan Auerhuhn Schweiz. Bundesamt für Umwelt, Schweizerische Vogelwarte, Schweizer Vogelschutz SVS/BirdLife Schweiz, Bern, p 38 [In German]Google Scholar
  30. Mollet P, Badilatti B, Bollmann K, Graf RF, Hess R, Jenny H, Mulhauser B, Perrenoud A, Rudmann F, Sachot S, Studer J (2003) Verbreitung und Bestand des Auerhuhns Tetrao urogallus in der Schweiz 2001 und ihre Veränderungen im 19 und 20. Jahrhundert, Der Ornithologische Beobachter 100:67–86 [In German]Google Scholar
  31. Mooij WM, DeAngelis DL (2003) Uncertainty in spatially explicit animal dispersal models. Ecol Appl 13:794–805Google Scholar
  32. Olden JD, Schooley RL, Monroe JB, Poff NL (2004) Context-dependent perceptual ranges and their relevance to animal movements in landscapes. J Anim Ecol 73:1190–1194CrossRefGoogle Scholar
  33. Pe’er G, Heinz SK, Frank K (2006) Connectivity in heterogeneous landscapes: analyzing the effect of topography. Landscape Ecol 21:47–61CrossRefGoogle Scholar
  34. Pfenning B, Hovestadt T, Poethke HJ (2004) The effect of patch constellation on the exchange of individuals between habitat-islands. Ecol Model 180:515–522CrossRefGoogle Scholar
  35. Revilla E, Wiegand T, Palomares F, Ferreras P, Delibes M (2004) Effects of matrix heterogeneity on animal dispersal: From individual behavior to metapopulation-level parameters. Am Nat 164:130–153CrossRefGoogle Scholar
  36. Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99CrossRefGoogle Scholar
  37. Schroth K-E (1992) Zum Lebensraum des Auerhuhns (Tetrao urogallus L) im Nordschwarzwald, PhD thesis, Universität München [In German]Google Scholar
  38. Segelbacher G, Hoglund J, Storch I (2003a) From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Mol Ecol 12:1773–1780CrossRefGoogle Scholar
  39. Segelbacher G, Storch I, Tomiuk J (2003b) Genetic evidence of capercaillie Tetrao urogallus dispersal sources and sinks in the Alps. Wildlife Biol 9:267–273Google Scholar
  40. Starfield AM (1990) Qualitative, rule-based modeling. BioScience 40:601–604CrossRefGoogle Scholar
  41. Storch I (1995) Annual home ranges and spacing patterns of capercaillie in Central Europe. J Wildlife Manag 59:392–400CrossRefGoogle Scholar
  42. Storch I (2000) Grouse status survey and Conservation Action Plan 2000–2004. WPA/BirdLife/SSC Grouse Specialist Group. IUCN, Gland. Switzerland and Cambridge, UK and the World Pheasant Association, Reading, UKGoogle Scholar
  43. Storch I, Segelbacher G (2000) Genetic correlates of spatial population structure in central European capercaillie Tetrao urogallus and black grouse T-tetrix: a project in progress. Wildlife Biol 6:305–310Google Scholar
  44. Tischendorf L (1997) Modelling individual movements in heterogeneous landscapes: potentials of a new approach. Ecol Model 103:33–42CrossRefGoogle Scholar
  45. Tischendorf L, Fahring L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19CrossRefGoogle Scholar
  46. Vandermeer J, Carvajal R (2001) Metapopulation dynamics and the quality of the matrix. Am Nat 158:211–220CrossRefGoogle Scholar
  47. Vos CC, Verboom J, Opdam PFM, Ter Braak CJF (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41CrossRefGoogle Scholar
  48. Wiegand T, Jeltsch F, Hanski I, Grimm V (2003) Using pattern-oriented modeling for revealing hidden information: a key for reconciling ecological theory and application. Oikos 100:209–222CrossRefGoogle Scholar
  49. Wiegand T, Moloney KA, Naves J, Knauer F (1999) Finding the missing link between landscape structure and population dynamics: a spatially explicit perspective. Am Nat 154:605–627PubMedCrossRefGoogle Scholar
  50. Wiegand T, Revilla E, Moloney KA (2005) Effects of habitat loss and fragmentation on population dynamics. Conserv Biol 19:108–121CrossRefGoogle Scholar
  51. With KA (2004) Metapopulation dynamics: perspectives from landscape ecology. In: Hanski I, Gaggiotti OE (eds) Ecology, genetics, and evolution of metapopulations. Elsevier, San Diego, USA, pp 23–44Google Scholar
  52. Zollner PA, Lima SL (1999) Search strategies for landscape-level interpatch movements. Ecology 80:1019–1030CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Roland F. Graf
    • 1
    • 2
    Email author
  • Stephanie Kramer-Schadt
    • 1
  • Néstor Fernández
    • 1
    • 3
  • Volker Grimm
    • 1
  1. 1.Department of Ecological ModellingHelmholtz Centre for Environmental Research—UFZLeipzigGermany
  2. 2.WSL Swiss Federal Research InstituteBirmensdorfSwitzerland
  3. 3.Department of Ecology and Plant BiologyUniversity of AlmeríaAlmeriaSpain

Personalised recommendations