Landscape Ecology

, Volume 21, Issue 6, pp 877–889

Genetic isolation by distance and landscape connectivity in the American marten (Martes americana)

  • Thomas Broquet
  • Nicolas Ray
  • Eric Petit
  • John M. Fryxell
  • Françoise Burel
Research Article

Abstract

Empirical studies of landscape connectivity are limited by the difficulty of directly measuring animal movement. ‘Indirect’ approaches involving genetic analyses provide a complementary tool to ‘direct’ methods such as capture–recapture or radio-tracking. Here the effect of landscape on dispersal was investigated in a forest-dwelling species, the American marten (Martes americana) using the genetic model of isolation by distance (IBD). This model assumes isotropic dispersal in a homogeneous environment and is characterized by increasing genetic differentiation among individuals separated by increasing geographic distances. The effect of landscape features on this genetic pattern was used to test for a departure from spatially homogeneous dispersal. This study was conducted on two populations in homogeneous vs. heterogeneous habitat in a harvested boreal forest in Ontario (Canada). A pattern of IBD was evidenced in the homogeneous landscape whereas no such pattern was found in the near-by harvested forest. To test whether landscape structure may be accountable for this difference, we used effective distances that take into account the effect of landscape features on marten movement instead of Euclidean distances in the model of isolation by distance. Effective distances computed using least-cost modeling were better correlated to genetic distances in both landscapes, thereby showing that the interaction between landscape features and dispersal in Martes americana may be detected through individual-based analyses of spatial genetic structure. However, the simplifying assumptions of genetic models and the low proportions in genetic differentiation explained by these models may limit their utility in quantifying the effect of landscape structure.

Keywords

American marten Boreal forest Connectivity Dispersal Effective distance Genetic structure Isolation by distance Landscape genetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriaensen, F., Chardon, J.P., Blust, G., Swinnen, E., Villalba, S., Gulinck, H., Matthysen, E. 2003The application of ‘least-cost’ modelling as a functional landscape modelLandsc. Urban Plan.64233247CrossRefGoogle Scholar
  2. Arnaud, J.-F. 2003Metapopulation genetic structure and migration pathways in the land snail Helix aspersa: influence of landscape heterogeneityLandscape Ecol.18333346CrossRefGoogle Scholar
  3. Avise, J.C. 2004Molecular Markers, Natural History, and EvolutionSinauer AssociatesSunderlandGoogle Scholar
  4. Broquet, T. 2004Structure génétiqueconnectivité du paysage et dispersion de la martre Américaine (Martes americana) en forêt boréale exploitéeUniversity of Rennes 1RennesPh.D. ThesisGoogle Scholar
  5. Broquet T., Johnson C.A., Petit E., Thompson I.D., Burel F. and Fryxell J.M. in press. Dispersal and genetic structure in the American marten, Martes americana. Mol. Ecol.Google Scholar
  6. Buskirk, S.W., Forrest, S.C., Raphael, M.G., Harlow, H.J. 1989Winter resting site ecology of marten in the central rocky mountainsJ. Wildl. Manage.53191196Google Scholar
  7. Buskirk, S.W., Powell, R.A. 1994

    Habitat ecology of fishers and American martens

    Buskirk, S.W.Raphael, M.G.Powell, R.A. eds. Martens, Sables, and Fischers. Biology and ConservationCornell UniversityNew York283296
    Google Scholar
  8. Castric, V., Bonney, F., Bernatchez, L. 2001Landscape structure and hierarchical genetic diversity in the brook charrSalvenilus fontinalisEvolution5510161028PubMedCrossRefGoogle Scholar
  9. Chardon, J.P., Adriaensen, F., Matthysen, E. 2003Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.)Landscape Ecol.18561573CrossRefGoogle Scholar
  10. Cleveland, W.S., Grosse, E., Shyu, W.M. 1992

    Local regression models

    Chambers, J.M.Hastie, T.J. eds. Statistical Models in SChapman and HallNew York309376
    Google Scholar
  11. Coulon, A., Cosson, J.F., Angibault, J.M., Cargnelutti, B., Galan, M., Morellet, N., Petit, E., Aulagnier, S., Hewison, A.J.M. 2004Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approachMol. Ecol.1328412850PubMedCrossRefGoogle Scholar
  12. Danchin, E., Heg, D., Doliguez, B. 2001

    Public information and breedding habitat selection

    Clobert, J.Danchin, E.Dhondt, A.A.Nichols, J.D. eds. DispersalOxford University PressNew York243258
    Google Scholar
  13. Davis, C.S., Strobeck, C. 1998Isolation, variability, and cross-species amplification of polymorphic microsatellite loci in the family MustelidaeMol. Ecol.717761778PubMedGoogle Scholar
  14. Davis, J.M., Stamps, J.A. 2004The effect of natal experience on habitat preferencesTrends Ecol. Evol.18411598CrossRefGoogle Scholar
  15. D’Eon, R.G., Glenn, S.M., Parfitt, I., Fortin, M.-J. 2002Landscape connectivity as a function of scale and organism vagility in a real forested landscapeConserv. Ecol.610Google Scholar
  16. Epperson, B.K. 2003Geographical GeneticsPrinceton University PressPrincetonGoogle Scholar
  17. Fecske, D.M., Jenks, J.A. 2002Dispersal by male american marten, Martes americanaCan. Field-Nat.116309311Google Scholar
  18. Fenster, C.B., Vekemans, X., Hardy, O. 2003Quantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculata (Leguminosae)Evolution579951007PubMedCrossRefGoogle Scholar
  19. Gardner, R.H., Gustafson, E.J. 2004Simulating dispersal of reintroduced species within heterogeneous landscapesEcol. Model.171339358CrossRefGoogle Scholar
  20. Goodwin, B.J. 2003Is landscape connectivity a dependent or independent variable?Landscape Ecol.18687699CrossRefGoogle Scholar
  21. Goodwin, B.J., Fahrig, L. 2002How does landscape structure influence landscape connectivity?Oikos99552570CrossRefGoogle Scholar
  22. Goudet, J. 1995F-STAT (vers. 1.2): a computer program to calculate F-statisticsJ. Hered.86485486Google Scholar
  23. Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3), updated from Goudet 1995. Available from http://www.unil.ch/izea/softwares/fstat.html
  24. Hale, M.L., Lurz, P.W.W., Shirley, M.D.F., Rushton, S., Fuller, R.M., Wolff, K. 2001Impact of landscape management on the genetic structure of red squirrel populationsScience29322462248PubMedCrossRefGoogle Scholar
  25. Hanski, I. 1999Metapopulation EcologyOxford University PressOxfordGoogle Scholar
  26. Hardy, O. 2003Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markersMol. Ecol.1215771588PubMedCrossRefGoogle Scholar
  27. Hardy, O., Vekemans, X. 1999Isolation by distance in a continuous population: reconciliation between spatial autocorrelation and population genetics modelsHeredity83145154PubMedCrossRefGoogle Scholar
  28. Hardy, O.J., Vekemans, X. 2002SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levelsMol. Ecol. Notes2618620CrossRefGoogle Scholar
  29. Leblois, R., Rousset, F., Estoup, A. 2004Influence of spatial and temporal heterogeneities on the estimation of demographic parameters in a continuous population using individual microsatellite dataGenetics16610811092PubMedCrossRefGoogle Scholar
  30. Michels, E., Cottenie, K., Neys, L., Gelas, K., Coppin, P., Meester, L. 2001Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distanceMol. Ecol.1019291938PubMedCrossRefGoogle Scholar
  31. Moilanen, A., Hanski, I. 2001On the use of connectivity measures in spatial ecologyOikos95147151CrossRefGoogle Scholar
  32. Neigel, J.E. 1997A comparison of alternative strategies for estimating gene flow from genetic markersAnnu. Rev. Ecol. Syst.28105128CrossRefGoogle Scholar
  33. Payer, D.C., Harrison, D.J. 2003Influence of forest structure on habitat use by American marten in an industrial forestFor. Ecol. Manage.179145156CrossRefGoogle Scholar
  34. Poole, K.G., Porter, A.D., Vries, A., Maundrell, C., Grindal, S.D., St. Clair, C.C. 2004Suitability of a young deciduous-dominated forest for American marten and the effects of forest removalCan. J. Zool.82423435CrossRefGoogle Scholar
  35. R Development Core Team 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, URL http://www.R-project.org.
  36. Ray, N. 2004Pathmatrix, a GIS tool to compute effective distances among samplesMol. Ecol. Notes5177180CrossRefGoogle Scholar
  37. Rousset, F. 1997Genetics differentiation and estimation of gene flow from F-statistics under isolation by distanceGenetics14512191228PubMedGoogle Scholar
  38. Rousset, F. 2000Genetic differentiation between individualsJ. Evol. Biol.135862CrossRefGoogle Scholar
  39. Rousset, F. 2001a

    Genetic approaches to the estimation of dispersal rates

    Clobert, J.Danchin, E.Dhondt, A.A.Nichols, J.D. eds. DispersalOxford University PressNew York1828
    Google Scholar
  40. Rousset F. 2001b. Inferences from spatial population genetics. In: Balding D.J. (ed.), Handbook of Statistical Genetics, John Wiley and Sons 681–712.Google Scholar
  41. Rousset, F. 2004Genetic Structure and Selection in Subdivided PopulationsPrinceton University PressPrincetonGoogle Scholar
  42. Selonen, V., Hanski, I.K. 2004Young flying squirrels (Pteromys volans) dispersing in fragmented forestsBehav. Ecol.15564571CrossRefGoogle Scholar
  43. Soutiere, E.C. 1979Effects of timber harvesting on marten in MaineJ. Wildl. Manage.43850860Google Scholar
  44. Steventon, J.D., Major, J.T. 1982Marten use of habitat in a commercially clear-cut forestJ. Wildl. Manage.46175182Google Scholar
  45. Sumner, J., Rousset, F., Estoup, A., Moritz, C. 2001Neighbourhood sizedispersal and density estimates in the prickly forest skink (Gnypetoscincus queenslandiae) using individual genetic and demographic methodsMol. Ecol.1019171927PubMedCrossRefGoogle Scholar
  46. Taylor, P.D., Fahrig, L., Henein, K., Merriam, G. 1993Connectivity is a vital element of landscape structureOikos68571573Google Scholar
  47. Tischendorf, L., Fahrig, L. 2000How should we measure landscape connectivity?Landscape Ecol.15633641CrossRefGoogle Scholar
  48. Tischendorf, L., Fahrig, L. 2001On the use of connectivity measures in spatial ecology. A replyOikos95152155CrossRefGoogle Scholar
  49. Verbeylen, G., Bruyn, L., Adriaensen, F., Matthysen, E. 2003Does matrix resistance influence Red suirrel (Sciurus vulgairs L. 1758) distribution in an urban landscape?Landscape Ecol.18791805CrossRefGoogle Scholar
  50. Vos, C.C., Antonisse-de-Jong, A.G., Goedhart, P.W., Smulders, M.J.M. 2001Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis)Heredity86598608PubMedCrossRefGoogle Scholar
  51. Watt, W.R., Baker, J.A., Hogg, D.M., McNicol, J.G., Naylor, B.J. 1996Forest Management Guidelines for the Provision of Marten HabitatQueen’ Printer for OntarioSault Ste. MarieGoogle Scholar
  52. Wiens, J.A. 2001

    The landscape context of dispersal

    Clobert, J.Danchin, E.Dhondt, A.A.Nichols, J.D. eds. DispersalOxford University PressNew York96109
    Google Scholar
  53. Wright, S. 1943Isolation by distanceGenetics28114138Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Thomas Broquet
    • 1
    • 6
  • Nicolas Ray
    • 2
    • 3
  • Eric Petit
    • 4
  • John M. Fryxell
    • 5
  • Françoise Burel
    • 1
  1. 1.UMR CNRS 6553 Ecobio, Université Rennes1Rennes CedexFrance
  2. 2.Environmental Science Group, School of BotanyUniversity of MelbourneParkvilleAustralia
  3. 3.Computational and Molecular Population Genetics, Zoological InstituteUniversity of BernBernSwitzerland
  4. 4.UMR CNRS 6552 Ethologie – Evolution – Ecologie, Université Rennes1PaimpontFrance
  5. 5.Zoology departmentUniversity of GuelphGuelphCanada
  6. 6.Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland

Personalised recommendations