Landscape Ecology

, Volume 21, Issue 2, pp 213–224 | Cite as

A Method to Efficiently Apply a Biogeochemical Model to a Landscape

  • Robert E. Kennedy
  • David P. Turner
  • Warren B. Cohen
  • Michael Guzy
Research Article


Biogeochemical models offer an important means of understanding carbon dynamics, but the computational complexity of many models means that modeling all grid cells on a large landscape is computationally burdensome. Because most biogeochemical models ignore adjacency effects between cells, however, a more efficient approach is possible. Recognizing that spatial variation in model outputs is solely a function of spatial variation in input driver variables such as climate, we developed a method to sample the model outputs in input variable space rather than geographic space, and to then use simple interpolation in input variable space to estimate values for the remainder of the landscape. We tested the method in a 100 km×260 km area of western Oregon, U.S.A. , comparing interpolated maps of net primary production (NPP) and net ecosystem production (NEP) with maps from an exhaustive, wall-to-wall run of the model. The interpolation method can match spatial patterns of model behavior well (correlations>0.8) using samples of only 5 t o 15% of the landscape. Compression of temporal variation in input drivers is a key step in the process, with choice of input variables for compression largely determining the upper bounds on the degree of match between interpolated and original maps. The method is applicable to any model that does not consider adjacency effects, and could free up computational expense for a variety of other computational burdens, including spatial sensitivity analyses, alternative scenario testing, or finer grain-size mapping.


Biome-BGC Carbon modeling Interpolation Mapping Net ecosystem production Net primary production Oregon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J.D., Federer, C.A. 1992A generalizedlumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystemsOecologia92463474CrossRefGoogle Scholar
  2. Acevedo, M.F., Pamarti, S., Ablan, M., Urban, D., Mikler, A. 2001Modeling forest landscapes: parameter estimation from gap models over heterogeneous terrainSimulation775368Google Scholar
  3. Alexandrov, G.A., Oikawa, T., Yamagata, Y. 2002The scheme for globalization of a process-based model explaining gradations in terrestrial NPP and its applicationEcol. Model.148293306CrossRefGoogle Scholar
  4. Band, L.E., Peterson, D.L., Running, S.W., Coughlan, J., Lammers, R., Dungan, J., Nemani, R. 1991Forest ecosystem processes at the watershed scale: basis for distributed simulationEcol. Model.56171196CrossRefGoogle Scholar
  5. Box, G.E.P., Draper, N.R. 1987Empirical Model-Building and Response SurfacesJohn Wiley & SonsNew YorkGoogle Scholar
  6. Burke, I.C., Kittel, T.G.F., Lauenroth, W.K., Snook, P., Yonker, C.M., Parton, W.J. 1991Regional analysis of the central Great PlainsBioScience41685692Google Scholar
  7. Coops, N.C., Waring, R.H. 2001Estimating forest productivity in the eastern Siskiyou Mountains of southwestern Oregon using a satellite driven process model, 3-PGSCan. J. For. Res.31143154CrossRefGoogle Scholar
  8. Franklin, S.E. 2001

    Modeling forest net primary productivity with reduced uncertainty by remote sensing of cover type and leaf area index

    Hunsaker, C.T.Goodchild, M.F.Friedl, M.Case, T.J. eds. Spatial Uncertainty in Ecology: Implications for Remote Sensing and GIS ApplicationsSpringer-VerlagNew York, NY402
    Google Scholar
  9. Friedman, L.W. 1996The Simulation MetamodelKluwer Academic PublishersNorwell, MassachusettsGoogle Scholar
  10. Garman, S.L. 2004Design and evaluation of a forest landscape change model for western OregonEcol. Model.175319337CrossRefGoogle Scholar
  11. Jongman, R.H.G., ter Braak, C.J.F., Tongeren, O.F.R. 1995Data Analysis in Community and Landscape EcologyCambridge University PressCambridgeGoogle Scholar
  12. Kern, J.S., Turner, D.P., Dodson, R.F. 1997

    Spatial patterns in soil organic carbon pool size in the northwestern United States

    Lal, R.Kimbal, J.M.Follett, R.Stewart, B.A. eds. Soil Processes and the Carbon CycleCRC PressBoca Raton2943
    Google Scholar
  13. Law, B.E., Turner, D.P., Lefsky, M., Campbell, J., Guzy, M., Sun, O., Tuyl, S., Cohen, W.B. 2004Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USAGlobal Change Biol.1014291444CrossRefGoogle Scholar
  14. Myers, R.H., Montgomery, D. 2002Response Surface Methodology: Process and Product Optimization using Designed ExperimentsJohn Wiley & SonsNew YorkGoogle Scholar
  15. Ollinger, S.V., Aber, J.D., Federer, C.A. 1998Estimating regional forest productivity and water yield using an ecosystem model linked to a GISLandscape Ecol.13323334CrossRefGoogle Scholar
  16. Parton, W.J., Stewart, J.W.B., Cole, C.V. 1987Analysis of factors controlling soil organic matter levels in Great Plains grasslandsSoil Sci. Soc. Am. J.5111731179Google Scholar
  17. Peters, D.P., Herrick, J.E., Urban, D.L., Gardner, R.H., Breshears, D.D. 2004Strategies for ecological extrapolationOikos106627636CrossRefGoogle Scholar
  18. Running, S.W., Hunt, E.R.J. 1993

    Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models

    Field, C.B.Ehleringer, J.R. eds. Scaling Ecophysiological Processes: Leaf to GlobeAcademic PressSan Diego388
    Google Scholar
  19. Thornton P. 1998.Regional Ecosystem Simulation: Combining Surface- and Satellite-based Observations to Study Linkages between Terrestrial Energy and Mass Budgets. PhD Dissertation, University of Montana.Google Scholar
  20. Thornton, P., Hasenauer, H., White, M.A. 2000Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: an application over complex terrain in AustriaAgric. For. Meteorol.104255271CrossRefGoogle Scholar
  21. Thornton, P., Running, S.W., White, M.A. 1997Generating surfaces of daily meteorological variables over large regions of complex terrainJ. Hydrol.190214251CrossRefGoogle Scholar
  22. Thornton, P.E., Law, B.E., Gholz, H.L., Clark, K.L., Falge, E., Ellsworth, D.S., Goldstein, A.H., Monson, R.K., Hollinger, D., Falk, M., Chen, J., Sparks, J.P. 2002Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forestsAgric. For. Meteorol.113185222CrossRefGoogle Scholar
  23. Urban, D., Acevedo, M.F., Garman, S.L. 1999

    Scaling fine-scale processes to large-scale patterns using models derived from models: meta-models

    Mladenoff, D.Baker, W. eds. Spatial Modeling of Forest Landscape Change: Approaches and ApplicationsCambridge University PressCambridge7098
    Google Scholar
  24. VEMAP Members 1995. Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochem. Cycles 9: 407–437.Google Scholar
  25. Waring, R.H., Franklin, J.F. 1979Evergreen coniferous forests of the Pacific NorthwestScience20413801386Google Scholar
  26. White M.A., Thornton P.E., Running S.W. and Nemani R.R. 2000. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls. Earth Interact. 4–003.Google Scholar
  27. Williams, M., Rastetter, E.B., Fernandes, D.N., Goulden, M.L., Shaver, G.R., Johnson, L.C. 1997Predicting gross primary productivity in terrestrial ecosystemsEcol. Appl.7882894Google Scholar
  28. Williams, M., Rastetter, E.B., Shaver, G.R., Hobbie, J.E., Carpino, E., Kwiatkowski, B.L. 2001Primary production of an arctic watershed: an uncertainty analysisEcol. Appl.1118001816Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Robert E. Kennedy
    • 1
    • 3
  • David P. Turner
    • 1
  • Warren B. Cohen
    • 2
  • Michael Guzy
    • 1
    • 4
  1. 1.Department of Forest ScienceOregon State UniversityCorvallisUSA
  2. 2.USDA Forest ServicePNW Research StationCorvallisUSA
  3. 3.USDA Forest Service, PNW Research StationCorvallisUSA
  4. 4.Department of Bioresource EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations