Advertisement

Kinetics and Catalysis

, Volume 46, Issue 2, pp 177–188 | Cite as

Molecular mechanism of direct alkene oxidation with nitrous oxide: DFT analysis

  • V. I. Avdeev
  • S. F. Ruzankin
  • G. M. Zhidomirov
Article

Abstract

Reaction paths are calculated by the DFT method in the B2LYP/6-31G* approximation for direct oxidation of cyclohexene and butene with nitrous oxide into carbonyl compounds. Two possible reaction channels differing in their intermediate are analyzed. Two-step mechanisms are predicted for these reactions. Both steps are activated reactions. The first step of the first channel is the conversion of the initial reactants into the five-membered heterocycle 1,2,3-oxadiazole, -C-N=N-O-C-, via a transition state. The first step of the second channel leads from the reactants via a transition state to a three-membered heterocycle (epoxide), -C-O-C-. The second step is the decomposition of these intermediates through hydrogen transfer within the hydrocarbon backbone and the formation of the final products. The rate-limiting step in the oxidation of cyclohexene and butene is determined by the electronic structure of the -C-N=N-O-C- heterocycle and is independent of the structure of the other hydrocarbon moieties. The activation energies calculated for separate steps suggest that the first reaction channel, leading to carbonyl compound, is more favorable from the standpoint of energetics. Two reaction pathways are possible for butene-1 oxidation, one leading to a ketone and the other to an aldehyde. The ketone is predicted to dominate in the product.

Keywords

Ketone Alkene Cyclohexene Epoxide Nitrous Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Panov, G.I., CATTECH, 2000, vol. 4, p. 18.Google Scholar
  2. 2.
    Leontiev, A.V., Fomicheva, O.A., Proskurnina, M.V., and Zefirov, N.S., Russ. Chem. Rev., 2001, vol. 70, p. 91.Google Scholar
  3. 3.
    Ross, S.K., Sutherland, J.W., Kuo, S.-C., and Klemm, R.B., J. Phys. Chem., 1997, vol. 101, p. 1104.Google Scholar
  4. 4.
    Panov, G.I., Uriarte, A.K., Rodkin, M.A., and Sobolev, V.I., Catal. Today, 1998, vol. 41, p. 365.Google Scholar
  5. 5.
    Delabie, A., Vinckier, C., Flock, M., and Pierloot, K., J. Phys. Chem. A, 2001, vol. 105, p. 5479.Google Scholar
  6. 6.
    Yoshizawa, K., Yumura, T., Shiota, Y., and Yamabe, T., Bull. Chem. Soc. Jpn., 2000, vol. 73, p. 29.Google Scholar
  7. 7.
    Kachurovskaya, N.A., Zhidomirov, G.M., Hensen, E.J.M., and van Santen, R.A., Catal. Lett., 2003, vol. 86, p. 25.Google Scholar
  8. 8.
    Ryder, J.A., Chakraborty, A.K., and Bell, A.T., J. Phys. Chem. B, 2002, vol. 106, p. 7059.Google Scholar
  9. 9.
    Yakovlev, A.L., Zhidomirov, G.M., and van Santen, R.A., Catal. Lett., 2001, vol. 175, p. 45.Google Scholar
  10. 10.
    Yakovlev, A.L. and Zhidomirov, G.M., Catal. Lett., 1999, vol. 63, p. 91.Google Scholar
  11. 11.
    Filatov, M.Y., Pelmenschikov, A.G., and Zhidomirov, G.M., J. Mol. Catal., 1993, vol. 80, p. 243.Google Scholar
  12. 12.
    Arbuznikov, A.V. and Zhidomirov, G.M., Catal. Lett., 1993, vol. 40, p. 17.Google Scholar
  13. 13.
    Yakovlev, A.L., Zhidomirov, G.M., and van Santen, R.A., J. Phys. Chem. B, 2001, vol. 105, p. 12297.Google Scholar
  14. 14.
    Panov, G.I., Dubkov, K.A., Starokon, E.V., and Parmon, V.N., React. Kinet. Catal. Lett., 2002, vol. 76, p. 401.Google Scholar
  15. 15.
    Dubkov, K.A., Panov, G.I., and Starokon, E.V., React. Kinet. Catal. Lett., 2002, vol. 77, p. 197.Google Scholar
  16. 16.
    Starokon, E.V., Dubkov, K.A., Babushkin, D.E., Parmon, V.N., and Panov, G.I., Adv. Synth. Catal., 2004, vol. 346 (in press).Google Scholar
  17. 17.
    Bridson-Jones, F.S., Buckley, G.D., Cross, L.H., and Driver, A.P., J. Chem. Soc., 1951, p. 2999.Google Scholar
  18. 18.
    Bridson-Jones, F.S. and Buckley, G.D., J. Chem. Soc., 1951, p. 3009.Google Scholar
  19. 19.
    Buckley, G.D. and Levy, W.J., J. Chem. Soc., 1951, p. 3016.Google Scholar
  20. 20.
    Huisgen, R., 1,3-Dipolar Cycloaddition Chemistry, Padwa, A., Ed., New York: Wiley, 1984, vol. 1.Google Scholar
  21. 21.
    Su, M.D., Liao, H.Yi., Chung, W.S., and Chu, S.Y., J. Org. Chem., 1999, vol. 64, p. 6710.PubMedGoogle Scholar
  22. 22.
    Gonzalez, C. and Schlegel, H.B., J. Phys.Chem., 1990, vol. 94, p. 5523.Google Scholar
  23. 23.
    Parr, R.G. and Yang, W., Density-Functional Theory of Atoms and Molecules, New York: Oxford Univ. Press, 1989.Google Scholar
  24. 24.
    Kohn, W., Becke, A.D., and Parr, R.G., J. Phys. Chem., 1996, vol. 100, p. 12974.Google Scholar
  25. 25.
    Becke, A.D., Phys. Rev. A, 1988, vol. 38, p. 3098.PubMedGoogle Scholar
  26. 26.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.Google Scholar
  27. 27.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B: Condens. Matter, 1988, vol. 37, p. 785.Google Scholar
  28. 28.
    Vosko, S.H., Wilk, L., and Nusair, M., Can. J. Phys., 1980, vol. 58, p. 1200.Google Scholar
  29. 29.
    Krishnan, R., Seger, J.S., and Pople, J.A., J. Chem. Phys., 1980, vol. 72, p. 650.Google Scholar
  30. 30.
    Baker, J., Muir, M., Andzelm, J., and Scheiner, A., Chemical Applications of Density Functional Theory, Laird, B.B., Ross, R.B., and Ziegler, T., Eds., ACS Symp. Ser., 1996, no. 629.Google Scholar
  31. 31.
    Peng, C., Ayala, P.Y., Schlegel, H.B., and Frisch, M.J., J. Comput. Chem., 1996, vol. 17, p. 49.Google Scholar
  32. 32.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian: Revision A.11, Pittsburgh, 2001.Google Scholar
  33. 33.
    Avdeev, V.I., Ruzankin, S.Ph., and Zhidomirov, G.M., Chem. Commun., 2003, p. 42.Google Scholar
  34. 34.
    Amioot, C., J. Mol. Spectrosc., 1976, vol. 59, p. 380.Google Scholar
  35. 35.
    Yamada, T., Hashimoto, K., Kitaichi, Y., Suzuki, K., and Ikeno, T., Chem. Lett., 2001, vol. 3, p. 268.Google Scholar
  36. 36.
    Ben-Daniel, R., Weiner, L., and Neumann, R., J. Am. Chem. Soc., 2002, vol. 124, p. 8788.PubMedGoogle Scholar
  37. 37.
    Semikolenov, S.V., Dubkov, K.A., Starokon’, E.V., Babushkin, D.E., and Panov, G.I., Izv. Akad. Nauk, Ser. Khim., 2005 (in press).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • V. I. Avdeev
    • 1
  • S. F. Ruzankin
    • 1
  • G. M. Zhidomirov
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations