Advertisement

Journal of Muscle Research and Cell Motility

, Volume 40, Issue 3–4, pp 299–308 | Cite as

Cardiomyopathy-associated mutations in tropomyosin differently affect actin–myosin interaction at single-molecule and ensemble levels

  • Galina V. KopylovaEmail author
  • Daniil V. Shchepkin
  • Salavat R. Nabiev
  • Alexander M. Matyushenko
  • Natalia A. Koubassova
  • Dmitrii I. Levitsky
  • Sergey Y. Bershitsky
Review
  • 63 Downloads

Abstract

In the heart, mutations in the TPM1 gene encoding the α-isoform of tropomyosin lead, in particular, to the development of hypertrophic and dilated cardiomyopathies. We compared the effects of hypertrophic, D175N and E180G, and dilated, E40K and E54K, cardiomyopathy mutations in TPM1 gene on the properties of single actin–myosin interactions and the characteristics of the calcium regulation in an ensemble of myosin molecules immobilised on a glass surface and interacting with regulated thin filaments. Previously, we showed that at saturating Ca2+ concentration the presence of Tpm on the actin filament increases the duration of the interaction. Here, we found that the studied Tpm mutations differently affected the duration: the D175N mutation reduced it compared to WT Tpm, while the E180G mutation increased it. Both dilated mutations made the duration of the interaction even shorter than with F-actin. The duration of the attached state of myosin to the thin filament in the optical trap did not correlate to the sliding velocity of thin filaments and its calcium sensitivity in the in vitro motility assay. We suppose that at the level of the molecular ensemble, the cooperative mechanisms prevail in the manifestation of the effects of cardiomyopathy-associated mutations in Tpm.

Keywords

Actin–myosin interaction Tropomyosin Cardiomyopathy mutation Calcium regulation In vitro motility assay Optical trap 

Notes

Acknowledgements

The authors thank Mr. D.I. Borovkov for assistance in processing the optical trap data.

Funding

This work was funded by the Russian Foundation for Basic Research Grants 17-00-00065 (D.L.), 17-00-00070 (S.B.), 17-00-00066 (N.K.), and 18-015-00252 (G.K.); and State Program AAAA-A19-119010590010-3 (D.L.) and AAAA-A18-118020590135-3 (S.B.). This work was performed using the equipment of the Shared Research Center of Scientific Equipment of IIP UB RAS.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Bai F, Weis A, Takeda AK, Chase PB, Kawai M (2011) Enhanced active cross-bridges during diastole: molecular pathogenesis of tropomyosin’s HCM mutations. Biophys J 100(4):1014–1023.  https://doi.org/10.1016/j.bpj.2011.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bai F, Groth HL, Kawai M (2012) DCM-related tropomyosin mutants E40K/E54K over-inhibit the actomyosin interaction and lead to a decrease in the number of cycling cross-bridges. PLoS ONE 7(10):e47471.  https://doi.org/10.1371/journal.pone.0047471 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bai F, Wang L, Kawai M (2013) A study of tropomyosin’s role in cardiac function and disease using thin-filament reconstituted myocardium. J Muscle Res Cell Motil 34:295–310.  https://doi.org/10.1007/s10974-013-9343-z CrossRefPubMedGoogle Scholar
  4. Barua B, Pamula MC, Hitchcock-DeGregori SE (2011) Evolutionarily conserved surface residues constitute actin binding sites of tropomyosin. Proc Natl Acad Sci USA 108:10150–10155.  https://doi.org/10.1073/pnas.1101221108 CrossRefPubMedGoogle Scholar
  5. Behrmann E, Müller M, Penczek PA, Mannherz HG, Manstein DJ, Raunser S (2012) Structure of the rigor actin-tropomyosin-myosin complex. Cell 150(2):327–338.  https://doi.org/10.1016/j.cell.2012.05.037 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bing W, Redwood CS, Purcell IF, Esposito G, Watkins H, Marston SB (1997) Effects of two hypertrophic cardiomyopathy mutations in α-tropomyosin, Asp175Asn and Glu180Gly, on Ca2+ regulation of thin filament motility. Biochem Biophys Res Commun 236:760–764.  https://doi.org/10.1006/bbrc.1997.7045 CrossRefPubMedGoogle Scholar
  7. Bing W, Knott A, Redwood C, Esposito G, Purcell I, Watkins H, Marston S (2000) Effect of hypertrophic cardiomyopathy mutations in human cardiac muscle alpha-tropomyosin (Asp175Asn and Glu180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay. J Mol Cell Cardiol 32(8):1489–1498.  https://doi.org/10.1006/jmcc.2000.1182 CrossRefPubMedGoogle Scholar
  8. Bremel RD, Weber A (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol 238(82):97–101CrossRefGoogle Scholar
  9. Chang AN, Harada K, Ackerman MJ, Potter JD (2005) Functional consequences of hypertrophic and dilated cardiomyopathy-causing mutations in α-tropomyosin. J Biol Chem 280:34343–34349.  https://doi.org/10.1074/jbc.M505014200 CrossRefPubMedGoogle Scholar
  10. Coviello DA, Maron BJ, Spirito P, Watkins H, Vosberg HP, Thierfelder L, Schoen FJ, Seidman JG, Seidman CE (1997) Clinical features of hypertrophic cardiomyopathy caused by mutation of a “hot spot” in the alpha-tropomyosin gene. J Am Coll Cardiol 29(3):635–640CrossRefGoogle Scholar
  11. Desai R, Geeves MA, Kad NM (2015) Using fluorescent myosin to directly visualize cooperative activation of thin filaments. J Biol Chem 290:1915–1925.  https://doi.org/10.1074/jbc.M114.609743 CrossRefPubMedGoogle Scholar
  12. Farman GP, Rynkiewicz MJ, Orzechowski M, Lehman W, Moore JR (2018) HCM and DCM cardiomyopathy-linked α-tropomyosin mutations influence off-state stability and crossbridge interaction on thin filaments. Arch Biochem Biophys 647:84–92.  https://doi.org/10.1016/j.abb.2018.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368(6467):113–119.  https://doi.org/10.1038/368113a0 CrossRefPubMedGoogle Scholar
  14. Fujita H, Sasaki D, Ishiwata S, Kawai M (2002) Elementary steps of the cross-bridge cycle in bovine myocardium with and without regulatory proteins. Biophys J 82(2):915–928.  https://doi.org/10.1016/S0006-3495(02)75453-2 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Golitsina N, An Y, Greenfield NJ, Thierfelder L, Iizuka K, Seidman JG, Seidman CE, Lehrer SS, Hitchcock-DeGregori SE (1997) Effects of two familial hypertrophic cardiomyopathy-causing mutations on α-tropomyosin structure and function. Biochemistry 36:4637–4642.  https://doi.org/10.1021/bi962970y CrossRefPubMedGoogle Scholar
  16. Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924.  https://doi.org/10.1152/physrev.2000.80.2.853 CrossRefPubMedGoogle Scholar
  17. Gupte TM, Haque F, Gangadharan B, Sunitha MS, Mukherjee S, Anandhan S, Rani DS, Mukundan N, Jambekar A, Thangaraj K, Sowdhamini R, Sommese RF, Nag S, Spudich JA, Mercer JA (2015) Mechanistic heterogeneity in contractile properties of α-tropomyosin (TPM1) mutants associated with inherited cardiomyopathies. J Biol Chem 290(11):7003–7015.  https://doi.org/10.1074/jbc.M114.596676 CrossRefPubMedGoogle Scholar
  18. Homsher E, Kim B, Bobkova A, Tobacman LS (1996) Calcium regulation of thin filament movement in an in vitro motility assay. Biophys J 70(4):1881–1892.  https://doi.org/10.1016/S0006-3495(96)79753-9 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Homsher E, Nili M, Chen IY, Tobacman LS (2003) Regulatory proteins alter nucleotide binding to acto-myosin of sliding filaments in motility assays. Biophys J 85(2):1046–1052.  https://doi.org/10.1016/S0006-3495(03)74543-3 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ishii S, Suzuki M, Ishiwata S, Kawai M (2019) Functional significance of HCM mutants of tropomyosin, V95A and D175N, studied with in vitro motility assays. Biophys Physicobiol 16:28–40.  https://doi.org/10.2142/biophysico.16.0_28 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jagatheesan G, Rajan S, Petrashevskaya N, Schwartz A (2004) Physiological significance of troponin T binding domains in striated muscle tropomyosin. Am J Physiol Heart Circ Physiol 287:1484–1494.  https://doi.org/10.1152/ajpheart.01112.2003 CrossRefGoogle Scholar
  22. Jagatheesan G, Rajan S, Petrashevskaya N, Schwartz A, Boivin G, Arteaga GM, Solaro RJ, Liggett SB, Wieczorek DF (2007) Rescue of tropomyosin-induced familial hypertrophic cardiomyopathy mice by transgenesis. Am J Physiol Heart Circ Physiol 293(2):949–958.  https://doi.org/10.1152/ajpheart.01341.2006 CrossRefGoogle Scholar
  23. Jin JP, Chong SM (2010) Localization of the two tropomyosin-binding sites of troponin T. Arch Biochem Biophys 500:144–150.  https://doi.org/10.1016/j.abb.2010.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kad NM, Kim S, Warshaw DM, VanBuren P, Baker JE (2005) Single-myosin crossbridge interactions with actin filaments regulated by troponin-tropomyosin. Proc Natl Acad Sci USA 102(47):16990–16995.  https://doi.org/10.1073/pnas.0506326102 CrossRefPubMedGoogle Scholar
  25. Knight AE, Veigel C, Chambers C, Molloy JE (2001) Analysis of single-molecule mechanical recordings: application to acto-myosin interactions. Prog Biophys Mol Biol 77:45–72.  https://doi.org/10.1016/S0079-6107(01)00010-4 CrossRefPubMedGoogle Scholar
  26. Kopylova G, Nabiev S, Nikitina L, Shchepkin D, Bershitsky S (2016a) The properties of the actin-myosin interaction in the heart muscle depend on the isoforms of myosin but not of α-actin. Biochem Biophys Res Commun 476:648–653.  https://doi.org/10.1134/S0006297915130106 CrossRefPubMedGoogle Scholar
  27. Kopylova GV, Shchepkin DV, Borovkov DI, Matyushenko AM (2016b) Effect of cardiomyopathic mutations in tropomyosin on calcium regulation of the actin-myosin interaction in skeletal muscle. Bull Exp Biol Med 162(1):42–44.  https://doi.org/10.1007/s10517-016-3540-x CrossRefPubMedGoogle Scholar
  28. Kremneva E, Boussouf S, Nikolaeva O, Maytum R, Geeves MA, Levitsky DI (2004) Effects of two familial hypertrophic cardiomyopathy mutations in α-tropomyosin, Asp175Asn and Glu180Gly, on the thermal unfolding of actin-bound tropomyosin. Biophys J 87:3922–3933.  https://doi.org/10.1529/biophysj.104.048793 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.  https://doi.org/10.1038/227680a0 CrossRefGoogle Scholar
  30. Ly S, Lehrer SS (2012) Long-range effects of familial hypertrophic cardiomyopathy mutations E180G and D175N on the properties of tropomyosin. Biochemistry 51(32):6413–6420.  https://doi.org/10.1021/bi3006835 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Månsson A, Ušaj M, Moretto L, Rassier DE (2018) Do actomyosin single-molecule mechanics data predict mechanics of contracting muscle? Int J Mol Sci 19(7):E1863.  https://doi.org/10.3390/ijms19071863 CrossRefPubMedGoogle Scholar
  32. Margossian SS, Lowey S (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol 85(Pt B):55–71.  https://doi.org/10.1016/0076-6879(82)85009-X CrossRefPubMedGoogle Scholar
  33. Mathur MC, Chase PB, Chalovich JM (2011) Several cardiomyopathy causing mutations on tropomyosin either destabilize the active state of actomyosin or alter the binding properties of tropomyosin. Biochem Biophys Res Commun 406(1):74–78.  https://doi.org/10.1016/j.bbrc.2011.01.112 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Matyushenko AM, Shchepkin DV, Kopylova GV, Popruga KE, Artemova NV, Pivovarova AV, Bershitsky SY, Levitsky DI (2017) Structural and functional effects of cardiomyopathy-causing mutations in the troponin T-binding region of cardiac tropomyosin. Biochemistry 56:250–259.  https://doi.org/10.1021/acs.biochem.6b00994 CrossRefPubMedGoogle Scholar
  35. Matyushenko AM, Koubassova NA, Shchepkin DV, Kopylova GV, Nabiev SR, Nikitina LV, Bershitsky SY, Levitsky DI, Tsaturyan AK (2019) The effects of cardiomyopathy-associated mutations in the head-to-tail overlap junction of α-tropomyosin on its properties and interaction with actin. Int J Biol Macromol 125:1266–1274.  https://doi.org/10.1016/j.ijbiomac.2018.09.105 CrossRefPubMedGoogle Scholar
  36. McKillop DFA, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65:693–701.  https://doi.org/10.1016/S0006-3495(93)81110-X CrossRefPubMedPubMedCentralGoogle Scholar
  37. McLachlan AD, Stewart M (1976) The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. J Mol Biol 103(2):271–298.  https://doi.org/10.1016/0022-2836(76)90313-2 CrossRefPubMedGoogle Scholar
  38. McLachlan AD, Stewart M, Smillie LB (1975) Sequence repeats in alpha-tropomyosin. J Mol Biol 98:281–291.  https://doi.org/10.1016/S0022-2836(75)80118-5 CrossRefPubMedGoogle Scholar
  39. Memo M, Leung MC, Ward DG, dos Remedios C, Morimoto S, Zhang L, Ravenscroft G, McNamara E, Nowak KJ, Marston SB, Messer AE (2013) Familial dilated cardiomyopathy mutations uncouple troponin I phosphorylation from changes in myofibrillar Ca2+ sensitivity. Cardiovasc Res 99(1):65–73.  https://doi.org/10.1093/cvr/cvt071 CrossRefPubMedGoogle Scholar
  40. Mirza M, Marston S, Willott R, Ashley C, Mogensen J, McKenna W, Robinson P, Redwood C, Watkins H (2005) Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype. J Biol Chem 280(31):28498–52806.  https://doi.org/10.1074/jbc.M412281200 CrossRefPubMedGoogle Scholar
  41. Mirza M, Robinson P, Kremneva E, Copeland O, Nikolaeva O, Watkins H, Levitsky D, Redwood C, El-Mezgueldi M, Marston S (2007) The effect of mutations in α-tropomyosin (E40K and E54K) that cause familial dilated cardiomyopathy on the regulatory mechanism of cardiac muscle thin filaments. J Biol Chem 282:13487–13497.  https://doi.org/10.1074/jbc.M701071200 CrossRefPubMedGoogle Scholar
  42. Monteiro PB, Lataro RC, Ferro JA, Reinach FC (1994) Functional alpha-tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino-terminal acetyl group. J Biol Chem 269:10461–10466PubMedGoogle Scholar
  43. Muthuchamy M, Pieples K, Rethinasamy P, Hoit B, Grupp IL, Boivin GP, Wolska B, Evans C, Solaro RJ, Wieczorek DF (1999) Mouse model of a familial hypertrophic cardiomyopathy mutation in alpha-tropomyosin manifests cardiac dysfunction. Circ Res 85(1):47–56.  https://doi.org/10.1161/01.RES.85.1.47 CrossRefPubMedGoogle Scholar
  44. Olson TM, Kishimoto NY, Whitby FG, Michels VV (2001) Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol 33(4):723–732.  https://doi.org/10.1006/jmcc.2000.1339 CrossRefPubMedGoogle Scholar
  45. Orzechowski M, Fischer S, Moore JR, Lehman W, Farman GP (2014) Energy landscapes reveal the myopathic effects of tropomyosin mutations. Arch Biochem Biophys 564:89–99.  https://doi.org/10.1016/j.abb.2014.09.007 CrossRefPubMedGoogle Scholar
  46. Palmiter KA, Tyska MJ, Dupuis DE, Alpert NR, Warshaw DM (1999) Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms. J Physiol 519(3):669–678.  https://doi.org/10.1111/j.1469-7793.1999.0669n.x CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pardee JD, Spudich JA (1982) Purification of muscle actin. Methods Enzymol 85(Pt B):164–179.  https://doi.org/10.1016/0076-6879(82)85020-9 CrossRefPubMedGoogle Scholar
  48. Potter JD (1982) Preparation of troponin and its subuits. Methods Enzymol 85(Pt B):241–263.  https://doi.org/10.1016/0076-6879(82)85024-6 CrossRefPubMedGoogle Scholar
  49. Prabhakar R, Boivin GP, Grupp IL, Hoit B, Arteaga G, Solaro JR, Wieczorek DF (2001) A familial hypertrophic cardiomyopathy α-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. J Mol Cell Cardiol 33:1815–1828.  https://doi.org/10.1006/jmcc.2001.1445 CrossRefPubMedGoogle Scholar
  50. Rajan S, Ahmed RP, Jagatheesan G, Petrashevskaya N, Boivin GP, Urboniene D, Arteaga GM, Wolska BM, Solaro RJ, Liggett SB, Wieczorek DF (2007) Dilated cardiomyopathy mutant tropomyosin mice develop cardiac dysfunction with significantly decreased fractional shortening and myofilament calcium sensitivity. Circ Res 101(2):205–214.  https://doi.org/10.1161/CIRCRESAHA.107.148379 CrossRefPubMedGoogle Scholar
  51. Redwood C, Robinson P (2013) Alpha-tropomyosin mutations in inherited cardiomyopathies. J Muscle Res Cell Motil 34(3–4):285–294.  https://doi.org/10.1007/s10974-013-9358-5 CrossRefPubMedGoogle Scholar
  52. Shchepkin DV, Nabiev SR, Kopylova GV, Matyushenko AM, Levitsky DI, Bershitsky SY, Tsaturyan AK (2017) Cooperativity of myosin interaction with thin filaments is enhanced by stabilizing substitutions in tropomyosin. J Muscle Res Cell Motil 38(2):183–191.  https://doi.org/10.1007/s10974-017-9472-x CrossRefPubMedGoogle Scholar
  53. Talmadge RJ, Roy RR (1993) Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoform. J Appl Physiol 75:2337–2340.  https://doi.org/10.1152/jappl.1993.75.5.2337 CrossRefPubMedGoogle Scholar
  54. Thierfelder L, MacRae C, Watkins H, Tomfohrde J et al (1993) A familial hypertrophic cardiomyopathy locus maps to chromosome 15q2. Proc Natl Acad Sci USA 90(13):6270–6274CrossRefGoogle Scholar
  55. Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg HP, Seidman JG, Seidman CE (1994) Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77(5):701–712.  https://doi.org/10.1016/0092-8674(94)90054-X CrossRefPubMedGoogle Scholar
  56. Tyska MJ, Warshaw DM (2002) The myosin power stroke. Cell Motil Cytoskelet 51:1–15.  https://doi.org/10.1002/cm.10014 CrossRefGoogle Scholar
  57. Wang F, Brunet NM, Grubich JR, Bienkiewicz EA, Asbury TM, Compton LA, Mihajlović G, Miller VF, Chase PB (2011) Facilitated cross-bridge interactions with thin filaments by familial hypertrophic cardiomyopathy mutations in alpha-tropomyosin. J Biomed Biotechnol 2011:435271.  https://doi.org/10.1155/2011/435271 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Watkins H, Ashrafian H, Redwood C (2011) Inherited cardiomyopathies. N Engl J Med 364:1643–1656.  https://doi.org/10.1056/NEJMra0902923 CrossRefPubMedGoogle Scholar
  59. Webb M, del Jackson R Jr, Stewart TJ, Dugan SP, Carter MS, Cremo CR, Baker JE (2013) The myosin duty ratio tunes the calcium sensitivity and cooperative activation of the thin filament. Biochemistry 52(37):6437–6444CrossRefGoogle Scholar
  60. Wernicke D, Thiel C, Duja-Isac CM, Essin KV, Spindler M, Nunez DJ, Plehm R, Wessel N, Hammes A, Edwards RJ, Lippoldt A, Zacharias U, Strömer H, Neubauer S, Davies MJ, Morano I, Thierfelder L (2004) alpha-Tropomyosin mutations Asp(175)Asn and Glu(180)Gly affect cardiac function in transgenic rats in different ways. Am J Physiol Regul Integr Comp Physiol 287(3):R685–R695.  https://doi.org/10.1152/ajpregu.00620.2003 CrossRefPubMedGoogle Scholar
  61. Williams DL Jr, Greene LE (1983) Comparison of the effects of tropomyosin and troponin-tropomyosin on the binding of myosin subfragment 1 to actin. Biochemistry 22(11):2770–2774.  https://doi.org/10.1021/bi00280a027 CrossRefPubMedGoogle Scholar
  62. Yamashita H, Sugiura S, Fujita H, Si Yasuda, Nagai R, Saeki Y, Sunagawa K, Sugi H (2003) Myosin light chain isoforms modify force-generating ability of cardiac myosin by changing the kinetics of actin-myosin interaction. Cardiovasc Res 60:580–588.  https://doi.org/10.1016/j.cardiores.2003.09.011 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Galina V. Kopylova
    • 1
    Email author
  • Daniil V. Shchepkin
    • 1
  • Salavat R. Nabiev
    • 1
  • Alexander M. Matyushenko
    • 2
  • Natalia A. Koubassova
    • 3
  • Dmitrii I. Levitsky
    • 2
    • 4
  • Sergey Y. Bershitsky
    • 1
  1. 1.Institute of Immunology and PhysiologyRussian Academy of SciencesYekaterinburgRussia
  2. 2.A.N. Bach Institute of Biochemistry, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  3. 3.Institute of MechanicsLomonosov Moscow State UniversityMoscowRussia
  4. 4.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations