Advertisement

Journal of Muscle Research and Cell Motility

, Volume 40, Issue 3–4, pp 309–318 | Cite as

CD34 regulates the skeletal muscle response to hypoxia

  • Mélissa Pagé
  • Catherine Maheux
  • Anick Langlois
  • Julyanne Brassard
  • Émilie Bernatchez
  • Sandra Martineau
  • Cyndi Henry
  • Marie-Josée Beaulieu
  • Ynuk Bossé
  • Mathieu C. Morissette
  • Richard Debigaré
  • Marie-Renée BlanchetEmail author
Rapid Communication

Abstract

Chronic obstructive pulmonary disease (COPD) can sometimes be associated with skeletal muscle atrophy. Hypoxemic episodes, which occur during disease exacerbation and daily physical activity, are frequent in COPD patients. However, the link between hypoxemia and muscle atrophy remains unclear, along with mechanisms of muscle hypoxic stress response. Myogenic progenitors (MPs) and fibro/adipogenic progenitors (FAPs) express CD34 and participate to muscle mass maintenance. Although there is evidence linking CD34 expression and muscle repair, the link between CD34 expression, muscle wasting and the hypoxic stress observed in COPD has never been studied. Using a 2-day model of exposure to hypoxic conditions, we investigated the impact of hypoxia on skeletal muscle wasting and function, and elucidated the importance of CD34 expression in that response. A 2-day exposure to hypoxic conditions induces muscle atrophy, which was significantly worse in Cd34/ mice compared to wild type (WT). Moreover, the lack of CD34 expression negatively impacts the maximal strength of the extensor digitorum longus muscle in response to hypoxia. Following exposure to hypoxic conditions, FAPs (which support MPs differentiation and myogenesis) are significantly lower in Cd34/ mice compared to WT animals while the expression of myogenic regulatory factors and degradation factors (Atrogin) are similar. CD34 expression is important in the maintenance of muscle mass and function in response to hypoxic stress. These results highlight a new potential role for CD34 in muscle mass maintenance in hypoxic stress such as observed in COPD.

Keywords

CD34 Skeletal muscle Hypoxic conditions MPs FAPs COPD Muscle atrophy 

Notes

Acknowledgements

Funding was provided by Fondation de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec / Fondation JD Bégin.

Supplementary material

10974_2019_9525_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. Alfaro LAS, Dick SA, Siegel AL, Anonuevo AS, McNagny KM, Megeney LA, Cornelison DDW, Rossi FMV (2011) CD34 promotes satellite cell motility and entry into proliferation to facilitate efficient skeletal muscle regeneration. Stem Cells 29(12):2030–2041PubMedPubMedCentralGoogle Scholar
  2. Barnes PJ (2008) Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 8(3):183–192PubMedGoogle Scholar
  3. Bigard AX, Sanchez H, Birot O, Serrurier B (2000) Myosin heavy chain composition of skeletal muscles in young rats growing under hypobaric hypoxia conditions. J Appl Physiol 88(2):479–486PubMedGoogle Scholar
  4. Blanchet MR, Maltby S, Haddon DJ, Merkens H, Zbytnuik L, McNagny KM (2007) CD34 facilitates the development of allergic asthma. Blood 110(6):2005–2012PubMedGoogle Scholar
  5. Blanchet M-R, Gold M, Maltby S, Bennett J, Petri B, Kubes P, Lee DM, McNagny KM (2010) Loss of CD34 leads to exacerbated autoimmune arthritis through increased vascular permeability. J Immunol 184(3):1292–1299PubMedGoogle Scholar
  6. Blanchet M-R, Bennett JL, Gold MJ, Levantini E, Tenen DG, Girard M, Cormier Y, McNagny KM (2011) CD34 is required for dendritic cell trafficking and pathology in murine hypersensitivity pneumonitis. Am J Respir Crit Care Med 184(6):687–698PubMedPubMedCentralGoogle Scholar
  7. Briguet A, Courdier-Fruh I, Foster M, Meier T, Magyar JP (2004) Histological parameters for the quantitative assessment of muscular dystrophy in the mdx-mouse. Neuromuscul Disord 14(10):675–682PubMedGoogle Scholar
  8. Contreras O, Rebolledo DL, Oyarzun JE, Olguin HC, Brandan E (2016) Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell Tissue Res 364(3):647–660PubMedGoogle Scholar
  9. Cordani N, Pisa V, Pozzi L, Sciorati C, Clementi E (2014) Nitric oxide controls fat deposition in dystrophic skeletal muscle by regulating fibro-adipogenic precursor differentiation. Stem Cells 32(4):874–885PubMedGoogle Scholar
  10. Crul T, Spruit MA, Gayan-Ramirez G, Quarck R, Gosselink R, Troosters T, Pitta F, Decramer M (2007) Markers of inflammation and disuse in vastus lateralis of chronic obstructive pulmonary disease patients. Eur J Clin Invest 37(11):897–904PubMedGoogle Scholar
  11. Davies MR, Liu X, Lee L, Laron D, Ning AY, Kim HT, Feeley BT (2016) TGF-beta small molecule inhibitor SB431542 reduces rotator cuff muscle fibrosis and fatty infiltration by promoting fibro/adipogenic progenitor apoptosis. PLoS ONE 11(5):e0155486PubMedPubMedCentralGoogle Scholar
  12. Dong Y, Silva KAS, Dong Y, Zhang L (2014) Glucocorticoids increase adipocytes in muscle by affecting IL-4 regulated FAP activity. FASEB J 28(9):4123–4132PubMedPubMedCentralGoogle Scholar
  13. Dong J, Dong Y, Chen Z, Mitch WE, Zhang L (2016) The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease. Kidney Int 91:119–128PubMedPubMedCentralGoogle Scholar
  14. Doucet M, Russell AP, Leger B, Debigare R, Joanisse DR, Caron M-A, LeBlanc P, Maltais F (2007) Muscle atrophy and hypertrophy signaling in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 176(3):261–269PubMedGoogle Scholar
  15. Elia M, Fuller NJ, Hardingham CR, Graves M, Screaton N, Dixon AK, Ward LC (2000) Modeling leg sections by bioelectrical impedance analysis, dual-energy X-ray absorptiometry, and anthropometry: assessing segmental muscle volume using magnetic resonance imaging as a reference. Ann N Y Acad Sci 904:298–305PubMedGoogle Scholar
  16. Favier FB, Costes F, Defour A, Bonnefoy R, Lefai E, Bauge S, Peinnequin A, Benoit H, Freyssenet D (2010) Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia. Am J Physiol Regul Integr Comp Physiol 298(6):R1659–R1666PubMedGoogle Scholar
  17. Fiore D, Judson RN, Low M, Lee S, Zhang E, Hopkins C, Xu P, Lenzi A, Rossi FMV, Lemos DR (2016) Pharmacological blockage of fibro/adipogenic progenitor expansion and suppression of regenerative fibrogenesis is associated with impaired skeletal muscle regeneration. Stem Cell Res 17(1):161–169PubMedGoogle Scholar
  18. Fry CS, Johnson DL, Ireland ML, Noehren B (2016) ACL injury reduces satellite cell abundance and promotes fibrogenic cell expansion within skeletal muscle. J Orthop Res 35:1876–1885Google Scholar
  19. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37(10):1974–1984PubMedGoogle Scholar
  20. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98(25):14440–14445PubMedGoogle Scholar
  21. Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thepenier C, Pascal Q, Guguin A, Gayraud-Morel B, Cavaillon J-M, Tajbakhsh S, Rocheteau P, Chretien F (2016) Comparative study of injury models for studying muscle regeneration in mice. PLoS ONE 11(1):e0147198PubMedPubMedCentralGoogle Scholar
  22. Hepler C, Vishvanath L, Gupta RK (2017) Sorting out adipocyte precursors and their role in physiology and disease. Genes Dev 31(2):127–140PubMedPubMedCentralGoogle Scholar
  23. Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC, Locksley RM, Rando TA, Chawla A (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153(2):376–388PubMedPubMedCentralGoogle Scholar
  24. Joe AWB, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FMV (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12(2):153–163PubMedPubMedCentralGoogle Scholar
  25. Langen RCJ, Gosker HR, Remels AHV, Schols AMWJ (2013) Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease. Int J Biochem Cell Biol 45(10):2245–2256PubMedGoogle Scholar
  26. Lemire BB, Debigare R, Dube A, Theriault M-E, Cote CH, Maltais F (2012) MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J Appl Physiol 113(1):159–166PubMedGoogle Scholar
  27. Lemos DR, Paylor B, Chang C, Sampaio A, Underhill TM, Rossi FMV (2012) Functionally convergent white adipogenic progenitors of different lineages participate in a diffused system supporting tissue regeneration. Stem Cells 30(6):1152–1162PubMedGoogle Scholar
  28. Lemos DR, Babaeijandaghi F, Low M, Chang C-K, Lee ST, Fiore D, Zhang R-H, Natarajan A, Nedospasov SA, Rossi FMV (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21(7):786–794PubMedGoogle Scholar
  29. Liu X, Ning AY, Chang NC, Kim H, Nissenson R, Wang L, Feeley BT (2016) Investigating the cellular origin of rotator cuff muscle fatty infiltration and fibrosis after injury. Muscles Ligaments Tendons J 6(1):6–15PubMedPubMedCentralGoogle Scholar
  30. Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigare R, Dekhuijzen PNR, Franssen F, Gayan-Ramirez G, Gea J, Gosker HR, Gosselink R, Hayot M, Hussain SNA, Janssens W (2014) An Official American Thoracic Society/European Respiratory Society Statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease executive summary. Am J Respir Crit Care Med 189(9):1121–1137Google Scholar
  31. Matar W, Nosek TM, Wong D, Renaud J (2000) Pinacidil suppresses contractility and preserves energy but glibenclamide has no effect during muscle fatigue. Am J Physiol Cell Physiol 278(2):C404–C416PubMedGoogle Scholar
  32. Mueller AA, van Velthoven CT, Fukumoto KD, Cheung TH, Rando TA (2016) Intronic polyadenylation of PDGFRalpha in resident stem cells attenuates muscle fibrosis. Nature 540(7632):276–279PubMedPubMedCentralGoogle Scholar
  33. Nielsen JS, McNagny KM (2008) Novel functions of the CD34 family. J Cell Sci 121:3683–3692PubMedGoogle Scholar
  34. Olfert IM, Breen EC, Mathieu-Costello O, Wagner PD (2001) Skeletal muscle capillarity and angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia. J Appl Physiol 91(3):1176–1184PubMedGoogle Scholar
  35. Paylor B, Joe AW, Rossi FMV, Lemos DR (2014) In vivo characterization of neural crest-derived fibro/adipogenic progenitor cells as a likely cellular substrate for craniofacial fibrofatty infiltrating disorders. Biochem Biophys Res Commun 451(1):148–151PubMedGoogle Scholar
  36. Penton CM, Thomas-Ahner JM, Johnson EK, McAllister C, Montanaro F (2013) Muscle side population cells from dystrophic or injured muscle adopt a fibro-adipogenic fate. PLoS ONE 8(1):e54553PubMedPubMedCentralGoogle Scholar
  37. Pertl C, Eblenkamp M, Pertl A, Pfeifer S, Wintermantel E, Lochmuller H, Walter MC, Krause S, Thirion C (2013) A new web-based method for automated analysis of muscle histology. BMC Musculoskelet Disord 14:26PubMedPubMedCentralGoogle Scholar
  38. Phelps M, Stuelsatz P, Yablonka-Reuveni Z (2016) Expression profile and overexpression outcome indicate a role for beta Klotho in skeletal muscle fibro/adipogenesis. FEBS J 283(9):1653–1668PubMedPubMedCentralGoogle Scholar
  39. Pomies P, Rodriguez J, Blaquiere M, Sedraoui S, Gouzi F, Carnac G, Laoudj-Chenivesse D, Mercier J, Prefaut C, Hayot M (2015) Reduced myotube diameter, atrophic signalling and elevated oxidative stress in cultured satellite cells from COPD patients. J Cell Mol Med 19(1):175–186PubMedGoogle Scholar
  40. Rose MS, Houston CS, Fulco CS, Coates G, Sutton JR, Cymerman A (1988) Operation everest. II: Nutrition and body composition. J Appl Physiol 65(6):2545–2551PubMedGoogle Scholar
  41. Saccone V, Consalvi S, Giordani L, Mozzetta C, Barozzi I, Sandona M, Ryan T, Rojas-Munoz A, Madaro L, Fasanaro P, Borsellino G, De Bardi M, Frige G, Termanini A, Sun X, Rossant J, Bruneau BG, Mercola M, Minucci S, Puri PL (2014) HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes Dev 28(8):841–857PubMedPubMedCentralGoogle Scholar
  42. Theriault M-E, Pare M-E, Maltais F, Debigare R (2012) Satellite cells senescence in limb muscle of severe patients with COPD. PLoS ONE 7(6):e39124PubMedPubMedCentralGoogle Scholar
  43. Theriault M-E, Pare M-E, Lemire BB, Maltais F, Debigare R (2014) Regenerative defect in vastus lateralis muscle of patients with chronic obstructive pulmonary disease. Respir Res 15:35PubMedPubMedCentralGoogle Scholar
  44. Uezumi A, Fukada S-I, Yamamoto N, Takeda SI, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12(2):143–152PubMedGoogle Scholar
  45. Wang Y, Hu K, Liu K, Li Z, Yang J, Dong Y, Nie M, Chen J, Ruan Y, Kang J (2015) Obstructive sleep apnea exacerbates airway inflammation in patients with chronic obstructive pulmonary disease. Sleep Med 16(9):1123–1130PubMedGoogle Scholar
  46. Watt MJ, Cheng Y (2017) Triglyceride metabolism in exercising muscle. Biochim Biophys Acta S1388–1981(17):30111–30119Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mélissa Pagé
    • 1
  • Catherine Maheux
    • 1
  • Anick Langlois
    • 1
  • Julyanne Brassard
    • 1
  • Émilie Bernatchez
    • 1
  • Sandra Martineau
    • 1
  • Cyndi Henry
    • 1
  • Marie-Josée Beaulieu
    • 1
  • Ynuk Bossé
    • 1
    • 2
  • Mathieu C. Morissette
    • 1
    • 2
  • Richard Debigaré
    • 1
  • Marie-Renée Blanchet
    • 1
    • 2
    Email author
  1. 1.Institut Universitaire de Cardiologie et de Pneumologie de QuébecUniversité LavalQuebecCanada
  2. 2.Department of MedicineUniversité LavalQuebecCanada

Personalised recommendations