Advertisement

The role of satellite and other functional cell types in muscle repair and regeneration

  • Bide Chen
  • Tizhong ShanEmail author
Reviews
  • 75 Downloads

Abstract

Skeletal muscles play essential roles in physiological processes, including motor function, energy hemostasis, and respiration. Skeletal muscles also have the capacity to regenerate after injury. Regeneration of skeletal muscle is an extremely complex biological process, which involves multiple cell types. Skeletal muscle stem cells (also known as satellite cells; SCs) are crucial for the development, growth, maintenance and repair of the skeletal muscle. Cell fates and function have been extensively studied in the context of skeletal muscle regeneration. In addition to SCs, other cell types, such as fibro-adipogenic precursors (FAPs), endothelial cells, fibroblasts, pericytes and certain immune cells, play important regulatory roles during skeletal muscle regeneration. In this review, we summarize and discuss the current research progress on the different cell types and their respective functions in skeletal muscle regeneration and repair.

Keywords

Muscle regeneration Satellite cell Fibro-adipogenic precursor Endothelial cell Immune cell Lymphocyte 

Notes

Acknowledgements

The project was partially supported by the National Natural Science Foundation of China (Grant No. 31672427) to TZS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Almada AE, Wagers AJ (2016) Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 17:267–279CrossRefGoogle Scholar
  2. Aranguren XL, Pelacho B, Peñuelas Abizanda G, Uriz M, Ecay M, Collantaes M, Araña M, Beerens M, Coppiello G, Prieto I, Perez-Ilzarbe M, Andreu EJ, Luttun A, Prósper F (2011) MAPC transplantation confers a more durable benefit than AC133+ cell transplantation in severe hind limb ischemia. Cell Transplant 20(2):259–269CrossRefGoogle Scholar
  3. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069CrossRefGoogle Scholar
  4. Baghdadi MB, Tajbakhsh S (2018) Regulation and phylogeny of skeletal muscle regeneration. Dev Biol 433:200–209CrossRefGoogle Scholar
  5. Bi P, Yue F, Sato Y, Wirbisky S, Liu W, Shan T, Wen Y, Zhou D, Freeman J, Kuang S (2016) Stage-specific effects of Notch activation during skeletal myogenesis. Elife 5:e17355CrossRefGoogle Scholar
  6. Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013a) Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 22:2298–2314CrossRefGoogle Scholar
  7. Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2013b) Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 305:C1098–C1113CrossRefGoogle Scholar
  8. Blau HM, Cosgrove BD, Ho AT (2015) The central role of muscle stem cells in regenerative failure with aging. Nat Med 21:854–862CrossRefGoogle Scholar
  9. Blotnick S, Peoples GE, Freeman MR, Eberlein TJ, Klagsbrun M (1994) T-lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth-factor and basic fibroblast growth-factor, mitogens for vascular cells and fibroblasts—differential production and release by Cd4+ And Cd8+ T-cells. Proc Natl Acad Sci USA 91:2890–2894CrossRefGoogle Scholar
  10. Brack AS, Rando TA (2012) Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10:504–514CrossRefGoogle Scholar
  11. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810CrossRefGoogle Scholar
  12. Buckingham M, Relaix F (2007) The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 23:645–673CrossRefGoogle Scholar
  13. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C, Mathis D (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–1295CrossRefGoogle Scholar
  14. Ceafalan LC, Popescu BO, Hinescu ME (2014) Cellular players in skeletal muscle regeneration. Biomed Res Int 2014:957014CrossRefGoogle Scholar
  15. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14:329–340CrossRefGoogle Scholar
  16. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301CrossRefGoogle Scholar
  17. Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577CrossRefGoogle Scholar
  18. Cornelison DDW, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283CrossRefGoogle Scholar
  19. Cottle BJ, Lewis FC, Shone V, Ellison-Hughes GM (2017) Skeletal muscle-derived interstitial progenitor cells (PICs) display stem cell properties, being clonogenic, self-renewing, and multi-potent in vitro and in vivo. Stem Cell Res Ther 8(1):158CrossRefGoogle Scholar
  20. De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147(4):869–878CrossRefGoogle Scholar
  21. Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499CrossRefGoogle Scholar
  22. Diaz-Manera J, Gallardo E, de Luna N, Navas M, Soria L, Garibaldi M, Rojas-Garcia R, Tonlorenzi R, Cossu G, Illa I (2012) The increase of pericyte population in human neuromuscular disorders supports their role in muscle regeneration in vivo. J Pathol 228:544–553CrossRefGoogle Scholar
  23. Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21:1455CrossRefGoogle Scholar
  24. Filigheddu N, Gnocchi VF, Coscia M, Cappelli M, Porporato PE, Taulli R, Traini S, Baldanzi G, Chianale F, Cutrupi S, Arnoletti E, Ghe C, Fubini A, Surico N, Sinigaglia F, Ponzetto C, Muccioli G, Crepaldi T, Graziani A (2007) Ghrelin and des-acyl ghrelin promote differentiation and fusion of C2C12 skeletal muscle cells. Mol Biol Cell 18:986–994CrossRefGoogle Scholar
  25. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4(+)CD25(+) regulatory T cells. Nat Immunol 4:330–336CrossRefGoogle Scholar
  26. Fontenot JD, Gavin MA, Rudensky AY (2017) Foxp3 programs the development and function of CD4(+)CD25(+) regulatory T cells. J Immunol 198:986–992Google Scholar
  27. Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu FJ, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2015) Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 21:76–80CrossRefGoogle Scholar
  28. Fu X, Xiao J, Wei YN, Li S, Liu Y, Yin J, Sun K, Sun H, Wang HT, Zhang ZK, Zhang BT, Sheng C, Wang HY, Hu P (2015) Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res 25:655–673CrossRefGoogle Scholar
  29. Fukada SI (2018) The roles of muscle stem cells in muscle injury, atrophy and hypertrophy. J Biochem 163:353–358CrossRefGoogle Scholar
  30. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82CrossRefGoogle Scholar
  31. Girardi F, Le Grand F (2018) Wnt signaling in skeletal muscle development and regeneration. Prog Mol Biol Transl Sci 153:157–179CrossRefGoogle Scholar
  32. Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thépenier C, Pascal Q, Guguin A, Gayraud-Morel B, Cavaillon JM, Tajbakhsh S, Rocheteau P, Chrétien F (2016) Comparative study of injury models for studying muscle regeneration in mice. PLoS ONE 11(1):e0147198CrossRefGoogle Scholar
  33. Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC, Locksley RM, Rando TA, Chawla A (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153:376–388CrossRefGoogle Scholar
  34. Hoeng JC, Dawson SC, House SA, Sagolla MS, Pham JK, Mancuso JJ, Lowe J, Cande WZ (2008) High-resolution crystal structure and in vivo function of a kinesin-2 homologue in Giardia intestinalis. Mol Biol Cell 19:3124–3137CrossRefGoogle Scholar
  35. Horsley V, Jansen KM, Mills ST, Pavlath GK (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113:483–494CrossRefGoogle Scholar
  36. Hu Z, Wang H, Lee IH, Modi S, Wang X, Du J, Mitch WE (2010) PTEN inhibition improves muscle regeneration in mice fed a high-fat diet. Diabetes 59:1312–1320CrossRefGoogle Scholar
  37. Iizuka K, Machida T, Hirafuji M (2014) Skeletal muscle is an endocrine organ. J Pharmacol Sci 125:125–131CrossRefGoogle Scholar
  38. Janssen I, Heymsfield SB, Wang Z, Ross R (2014) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. (vol 89, pg 81, 2000). J Appl Physiol 116:1342CrossRefGoogle Scholar
  39. Joe AWB, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FMV (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:U144–U153CrossRefGoogle Scholar
  40. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30(30):531–564CrossRefGoogle Scholar
  41. Juban G, Chazaud B (2017) Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration. FEBS Lett 591:3007–3021CrossRefGoogle Scholar
  42. Kim J, Lee J (2017) Role of transforming growth factor-beta in muscle damage and regeneration: focused on eccentric muscle contraction. J Exerc Rehabil 13:621–626CrossRefGoogle Scholar
  43. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175CrossRefGoogle Scholar
  44. Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172:103–113CrossRefGoogle Scholar
  45. Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC, Wagers AJ, Benoist C, Mathis D (2016) Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44:355–367CrossRefGoogle Scholar
  46. Latroche C, Weiss-Gayet M, Muller L, Gitiaux C, Leblanc P, Liot S, Ben-Larbi S, Abou-Khalil R, Verger N, Bardot P, Magnan M, Chretien F, Mounier R, Germain S, Chazaud B (2017) Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages. Stem Cell Reports 9:2018–2033CrossRefGoogle Scholar
  47. Leavy O (2014) Regulatory T cells: muscling in on repair. Nat Rev Immunol 14:63CrossRefGoogle Scholar
  48. Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D, Zhang RH, Natarajan A, Nedospasov SA, Rossi FM (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21:786–794CrossRefGoogle Scholar
  49. Lewis FC, Henning BJ, Marazzi G, Sassoon D, Ellison GM, Nadal-Ginard B (2014) Porcine skeletal muscle-derived multipotent PW1pos/Pax7neg interstitial cells: isolation, characterization, and long-term culture. Stem Cell Transl Med 3(6):702–712CrossRefGoogle Scholar
  50. Liu W, Wen Y, Bi P, Lai X, Liu XS, Liu X, Kuang S (2012) Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation. Development 139:2857–2865CrossRefGoogle Scholar
  51. Masopust D, Schenkel JM (2013) The integration of T cell migration, differentiation and function. Nat Rev Immunol 13:309–320CrossRefGoogle Scholar
  52. Mathew SJ, Hansen JM, Merrell AJ, Murphy MM, Lawson JA, Hutcheson DA, Hansen MS, Angus-Hill M, Kardon G (2011) Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development 138:371–384CrossRefGoogle Scholar
  53. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495CrossRefGoogle Scholar
  54. Mitchell KJ, Pannérec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon DA (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12(3):257–266CrossRefGoogle Scholar
  55. Mofarrahi M, McClung JM, Kontos CD, Davis EC, Tappuni B, Moroz N, Pickett AE, Huck L, Harel S, Danialou G, Hussain SNA (2015) Angiopoietin-1 enhances skeletal muscle regeneration in mice. Am J Physiol Regul Integr Comp Physiol 308:R576–R589CrossRefGoogle Scholar
  56. Motohashi N, Asakura A (2014) Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol 2:1CrossRefGoogle Scholar
  57. Mozzetta C, Consalvi S, Saccone V, Tierney M, Diamantini A, Mitchell KJ, Marazzi G, Borsellino G, Battistini L, Sassoon D, Sacco A, Puri PL (2013) Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. Embo Mol Med 5:626–639CrossRefGoogle Scholar
  58. Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637CrossRefGoogle Scholar
  59. Parise G, Mckinnell IW, Rudnicki MA (2008) Muscle satellite cell and atypical myogenic progenitor response following exercise. Muscle Nerve 37:611–619CrossRefGoogle Scholar
  60. Perry RL, Rudnick MA (2000) Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci 5:D750–D767CrossRefGoogle Scholar
  61. Polesskaya A, Seale P, Rudnicki MA (2003) Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113:841–852CrossRefGoogle Scholar
  62. Quarta M, Brett JO, DiMarco R, De Morree A, Boutet SC, Chacon R, Gibbons MC, Garcia VA, Su J, Shrager JB, Heilshorn S, Rando TA (2016) An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol 34:752CrossRefGoogle Scholar
  63. Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139:2845–2856CrossRefGoogle Scholar
  64. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91–102CrossRefGoogle Scholar
  65. Rothenberg ME, Hogan SP (2006) The eosinophil. Ann Rev Immunol 24:147–174CrossRefGoogle Scholar
  66. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–506CrossRefGoogle Scholar
  67. Saclier M, Cuvellier S, Magnan M, Mounier R, Chazaud B (2013) Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration. FEBS J 280:4118–4130CrossRefGoogle Scholar
  68. Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 1:4CrossRefGoogle Scholar
  69. Sciorati C, Rigamonti E, Manfredi AA, Rovere-Querini P (2016) Cell death, clearance and immunity in the skeletal muscle. Cell Death Differ 23:927–937CrossRefGoogle Scholar
  70. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786CrossRefGoogle Scholar
  71. Seale P, Ishibashi J, Scime A, Rudnicki MA (2004) Pax7 is necessary and sufficient for the myogenic specification of CD45(+): Sca1(+) stem cells from injured muscle. PLoS Biol 2:664–672CrossRefGoogle Scholar
  72. Serena E, Zatti S, Zoso A, Lo Verso F, Tedesco FS, Cossu G, Elvassore N (2016) Skeletal muscle differentiation on a chip shows human donor mesoangioblasts' efficiency in restoring dystrophin in a duchenne muscular dystrophy model. Stem Cells Transl Med 5(12):1676–1683CrossRefGoogle Scholar
  73. Shan T, Zhang P, Liang X, Bi P, Yue F, Kuang S (2014) Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells 32:2893–2907CrossRefGoogle Scholar
  74. Shan T, Xu Z, Liu J, Wu W, Wang Y (2017a) Lkb1 regulation of skeletal muscle development, metabolism and muscle progenitor cell homeostasis. J Cell Physiol 232:2653–2656CrossRefGoogle Scholar
  75. Shan T, Xu Z, Wu W, Liu J, Wang Y (2017b) Roles of Notch1 signaling in regulating satellite cell fates choices and postnatal skeletal myogenesis. J Cell Physiol 232:2964–2967CrossRefGoogle Scholar
  76. Sousa-Victor P, Garcia-Prat L, Serrano AL, Perdiguero E, Munoz-Canoves P (2015) Muscle stem cell aging: regulation and rejuvenation. Trends Endocrinol Metab 26:287–296CrossRefGoogle Scholar
  77. Spencer MJ, Walsh CM, Dorshkind KA, Rodriguez EM, Tidball JG (1997) Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity. J Clin Investig 99:2745–2751CrossRefGoogle Scholar
  78. Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128CrossRefGoogle Scholar
  79. Thomas GD (2013) Functional muscle ischemia in Duchenne and Becker muscular dystrophy. Front Physiol 4:381CrossRefGoogle Scholar
  80. Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:R1173–R1187CrossRefGoogle Scholar
  81. Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D'Antona G, Tonlorenzi R, Porretti L, Gavina M, Mamchaoui K, Pellegrino MA, Furling D, Mouly V, Butler-Browne GS, Bottinelli R, Cossu G, Bresolin N (2004) Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114(2):182–195CrossRefGoogle Scholar
  82. Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12:143–152CrossRefGoogle Scholar
  83. Varga T, Mounier R, Gogolak P, Poliska S, Chazaud B, Nagy L (2013) Tissue LyC6(-) macrophages are generated in the absence of circulating LyC6(-) monocytes and Nur77 in a model of muscle regeneration. J Immunol 191:5695–5701CrossRefGoogle Scholar
  84. Varga T, Mounier R, Horvath A, Cuvellier S, Dumont F, Poliska S, Ardjoune H, Juban G, Nagy L, Chazaud B (2016) Highly dynamic transcriptional signature of distinct macrophage subsets during sterile inflammation, resolution, and tissue repair. J Immunol 196:4771–4782CrossRefGoogle Scholar
  85. von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci USA 110:16474–16479CrossRefGoogle Scholar
  86. Wang YX, Rudnicki MA (2011) Satellite cells, the engines of muscle repair. Nat Rev Mol Cell Biol 13:127–133CrossRefGoogle Scholar
  87. Wen Y, Bi P, Liu W, Asakura A, Keller C, Kuang S (2012) Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol 32:2300–2311CrossRefGoogle Scholar
  88. Wosczyna MN, Rando TA (2018) A muscle stem cell support group: coordinated cellular responses in muscle regeneration. Dev Cell 46:135–143CrossRefGoogle Scholar
  89. Yue F, Bi P, Wang C, Li J, Liu X, Kuang S (2016) Conditional loss of Pten in myogenic progenitors leads to postnatal skeletal muscle hypertrophy but age-dependent exhaustion of satellite cells. Cell Rep 17:2340–2353CrossRefGoogle Scholar
  90. Yue F, Bi PP, Wang C, Shan TZ, Nie YH, Ratliff TL, Gavin TP, Kuang SH (2017) Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun 8:14328CrossRefGoogle Scholar
  91. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166:347–357CrossRefGoogle Scholar
  92. Zhang J, Xiao ZC, Qu C, Cui W, Wang XN, Du J (2014) CD8 T cells are involved in skeletal muscle regeneration through facilitating MCP-1 secretion and Gr1(high) macrophage infiltration. J Immunol 193:5149–5160CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Animal Sciences, Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouPeople’s Republic of China

Personalised recommendations