Improving human skeletal muscle myosin heavy chain fiber typing efficiency

  • Kevin A. Murach
  • James R. Bagley
  • Kathryn A. McLeland
  • Jose A. Arevalo
  • Anthony B. Ciccone
  • Kylie K. Malyszek
  • Yuan Wen
  • Andrew J. Galpin
Rapid Communication


Single muscle fiber sodium dodecyl sulfate polyacrylamide gel-electrophoresis (SDS-PAGE) is a sensitive technique for determining skeletal muscle myosin heavy chain (MHC) composition of human biopsy samples. However, the number of fibers suitable to represent fiber type distribution via this method is undefined. Muscle biopsies were obtained from the vastus lateralis (VL) of nine resistance-trained males (25 ± 1 year, height = 179 ± 5 cm, mass = 82 ± 8 kg). Single fiber MHC composition was determined via SDS-PAGE. VL fiber type distribution [percent MHC I, I/IIa, IIa, IIa/IIx, and total “hybrids” (i.e. I/IIa + IIa/IIx)] was evaluated according to number of fibers analyzed per person (25 vs. 125). VL fiber type distribution did not differ according to number of fibers analyzed (P > 0.05). VL biopsy fiber type distribution of nine subjects is represented by analyzing 25 fibers per person. These data may help minimize cost, personnel-time, and materials associated with this technique, thereby improving fiber typing efficiency in humans.


SDS-PAGE Muscle biopsy Hybrid fibers Vastus lateralis 



Thanks to Drs. Scott Trappe, Todd Trappe, Ulrika Raue, and Holmes Finch for their thoughts and feedback on the topic. This work was funded by a California State University, Fullerton Junior Faculty Grant (CSUF03569) to A. J. Galpin and publication costs were defrayed by the Department of Kinesiology, College of Health and Social Sciences, San Francisco State University.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts to declare.


  1. Andersen JL, Klitgaard H, Bangsbo J, Saltin B (1994a) Myosin heavy chain isoforms in single fibres from m. vastus lateralis of soccer players: effects of strength-training. Acta Physiol Scand 150(1):21–26. doi: 10.1111/j.1748-1716.1994.tb09655.x CrossRefPubMedGoogle Scholar
  2. Andersen JL, Klitgaard H, Saltin B (1994b) Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: influence of training. Acta Physiol Scand 151(2):135–142. doi: 10.1111/j.1748-1716.1994.tb09730.x CrossRefPubMedGoogle Scholar
  3. Andersen JL, Mohr T, Biering-Sorensen F, Galbo H, Kjaer M (1996) Myosin heavy chain isoform transformation in single fibres from m. vastus lateralis in spinal cord injured individuals: effects of long-term functional electrical stimulation (FES). Pflug Arch 431(4):513–518. doi: 10.1007/BF02191897 CrossRefGoogle Scholar
  4. Andersen JL, Terzis G, Kryger A (1999) Increase in the degree of coexpression of myosin heavy chain isoforms in skeletal muscle fibers of the very old. Muscle Nerve 22(4):449–454. doi: 10.1002/(SICI)1097-4598(199904)22:4<449::AID-MUS4>3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  5. Bagley J, Murach K, Trappe S (2012) Microgravity-induced fiber type shift in human skeletal muscle. Gravit Space Biol 26(1):34–40Google Scholar
  6. Bergström J (1962) Muscle electrolytes in man. Scand J Clin Lab Invest Suppl 68:14Google Scholar
  7. Biral D, Betto R, Danieli-Betto D, Salviati G (1988) Myosin heavy chain composition of single fibres from normal human muscle. Biochem J 250(1):307–308. doi: 10.1042/bj2500307 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Broos S, Malisoux L, Theisen D, Francaux M, Deldicque L, Thomis MA (2012) Role of alpha-actinin-3 in contractile properties of human single muscle fibers: a case series study in paraplegics. PLoS One 7(11):e49281. doi: 10.1371/journal.pone.0049281 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Daugaard JR, Nielsen JN, Kristiansen S, Andersen JL, Hargreaves M, Richter EA (2000) Fiber type-specific expression of GLUT4 in human skeletal muscle: influence of exercise training. Diabetes 49(7):1092–1095. doi: 10.2337/diabetes. CrossRefPubMedGoogle Scholar
  10. Dickinson JM, Lee JD, Sullivan BE, Harber MP, Trappe SW, Trappe TA (2010) A new method to study in vivo protein synthesis in slow- and fast-twitch muscle fibers and initial measurements in humans. J Appl Physiol 108(5):1410–1416. doi: 10.1152/japplphysiol.00905.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gallagher P, Trappe S, Harber M, Creer A, Mazzetti S, Trappe T, Alkner B, Tesch P (2005) Effects of 84-days of bedrest and resistance training on single muscle fibre myosin heavy chain distribution in human vastus lateralis and soleus muscles. Acta Physiol Scand 185(1):61–69. doi: 10.1111/j.1365-201X.2005.01457.x CrossRefPubMedGoogle Scholar
  12. Galpin AJ, Raue U, Jemiolo B, Trappe TA, Harber MP, Minchev K, Trappe S (2012) Human skeletal muscle fiber type specific protein content. Anal Biochem 425(2):175–182. doi: 10.1016/j.ab.2012.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Garner DJ, Widrick JJ (2003) Cross-bridge mechanisms of muscle weakness in multiple sclerosis. Muscle Nerve 27(4):456–464. doi: 10.1002/mus.10346 CrossRefPubMedGoogle Scholar
  14. Harber MP, Gallagher PM, Trautmann J, Trappe SW (2002) Myosin heavy chain composition of single muscle fibers in male distance runners. Int J Sports Med 23(7):484–488. doi: 10.1055/s-2002-35067 CrossRefPubMedGoogle Scholar
  15. Henriksson-Larsen KB, Lexell J, Sjostrom M (1983) Distribution of different fibre types in human skeletal muscles. I. Method for the preparation and analysis of cross-sections of whole tibialis anterior. Histochem J 15(2):167–178. doi: 10.1007/BF01042285 CrossRefPubMedGoogle Scholar
  16. Hughes MC, Ramos SV, Turnbull PC, Nejatbakhsh A, Baechler BL, Tahmasebi H, Laham R, Gurd BJ, Quadrilatero J, Kane DA, Perry CG (2015) Mitochondrial bioenergetics and fiber type assessments in microbiopsy vs. bergstrom percutaneous sampling of human skeletal muscle. Front Physiol 6:360. doi: 10.3389/fphys.2015.00360 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kesidis N, Metaxas TI, Vrabas IS, Stefanidis P, Vamvakoudis E, Christoulas K, Mandroukas A, Balasas D, Mandroukas K (2008) Myosin heavy chain isoform distribution in single fibres of bodybuilders. Eur J Appl Physiol 103(5):579–583. doi: 10.1007/s00421-008-0751-5 CrossRefPubMedGoogle Scholar
  18. Klitgaard H, Bergman O, Betto R, Salviati G, Schiaffino S, Clausen T, Saltin B (1990) Co-existence of myosin heavy chain I and IIa isoforms in human skeletal muscle fibres with endurance training. Pflug Arch 416(4):470–472. doi: 10.1007/BF00370757 CrossRefGoogle Scholar
  19. Kohn TA, Essen-Gustavsson B, Myburgh KH (2007) Exercise pattern influences skeletal muscle hybrid fibers of runners and nonrunners. Med Sci Sports Exerc 39(11):1977–1984. doi: 10.1249/mss.0b013e3181453546 CrossRefPubMedGoogle Scholar
  20. Kohn TA, Essen-Gustavsson B, Myburgh KH (2011) Specific muscle adaptations in type II fibers after high-intensity interval training of well-trained runners. Scand J Med Sci Sports 21(6):765–772. doi: 10.1111/j.1600-0838.2010.01136.x CrossRefPubMedGoogle Scholar
  21. Krause M, Rodrigues-Krause J, O’Hagan C, De Vito G, Boreham C, Susta D, Newsholme P, Murphy C (2012) Differential nitric oxide levels in the blood and skeletal muscle of type 2 diabetic subjects may be consequence of adiposity: a preliminary study. Metab, Clin Exp 61(11):1528–1537. doi: 10.1016/j.metabol.2012.05.003 CrossRefGoogle Scholar
  22. Larsson L, Moss RL (1993) Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol 472:595–614CrossRefPubMedPubMedCentralGoogle Scholar
  23. Luciano CA, Sivakumar K, Spector SA, Dalakas MC (1996) Electrophysiologic and histologic studies in clinically unaffected muscles of patients with prior paralytic poliomyelitis. Muscle Nerve 19(11):1413–1420. doi: 10.1002/(SICI)1097-4598(199611)19:11<1413:AID-MUS5>3.0.CO;2-F CrossRefPubMedGoogle Scholar
  24. Malisoux L, Francaux M, Nielens H, Renard P, Lebacq J, Theisen D (2006a) Calcium sensitivity of human single muscle fibers following plyometric training. Med Sci Sports Exerc 38(11):1901–1908. doi: 10.1249/01.mss.0000232022.21361.47 CrossRefPubMedGoogle Scholar
  25. Malisoux L, Francaux M, Nielens H, Theisen D (2006b) Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol 100(3):771–779. doi: 10.1152/japplphysiol.01027.2005 CrossRefPubMedGoogle Scholar
  26. Malisoux L, Jamart C, Delplace K, Nielens H, Francaux M, Theisen D (2007) Effect of long-term muscle paralysis on human single fiber mechanics. J Appl Physiol 102(1):340–349. doi: 10.1152/japplphysiol.00609.2006 CrossRefPubMedGoogle Scholar
  27. Murach K, Raue U, Wilkerson B, Minchev K, Jemiolo B, Bagley J, Luden N, Trappe S (2014) Single muscle fiber gene expression with run taper. PLoS One 9(9):e108547. doi: 10.1371/journal.pone.0108547 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nygaard E, Sanchez J (1982) Intramuscular variation of fiber types in the brachial biceps and the lateral vastus muscles of elderly men: how representative is a small biopsy sample? Anat Rec 203(4):451–459. doi: 10.1002/ar.1092030404 CrossRefPubMedGoogle Scholar
  29. Ohira Y, Yoshinaga T, Ohara M, Nonaka I, Yoshioka T, Yamashita-Goto K, Shenkman BS, Kozlovskaya IB, Roy RR, Edgerton VR (1999) Myonuclear domain and myosin phenotype in human soleus after bed rest with or without loading. J Appl Physiol 87(5):1776–1785PubMedGoogle Scholar
  30. Parcell AC, Trappe SW, Godard MP, Williamson DL, Fink WJ, Costill DL (2000) An upper arm model for simulated weightlessness. Acta Physiol Scand 169(1):47–54. doi: 10.1046/j.1365-201x.2000.00689.x CrossRefPubMedGoogle Scholar
  31. Parcell AC, Sawyer RD, Craig Poole R (2003) Single muscle fiber myosin heavy chain distribution in elite female track athletes. Med Sci Sports Exerc 35(3):434–438. doi: 10.1249/01.MSS.0000053735.99344.C0 CrossRefPubMedGoogle Scholar
  32. Parcell AC, Sawyer RD, Drummond MJ, O’Neil B, Miller N, Woolstenhulme MT (2005) Single-fiber MHC polymorphic expression is unaffected by sprint cycle training. Med Sci Sports Exerc 37(7):1133–1137. doi: 10.1249/01.mss/0000170123.27209.e1 CrossRefPubMedGoogle Scholar
  33. Pette D, Staron RS (1997) Mammalian skeletal muscle fiber type transitions. Int Rev Cytol 170:143–223. doi: 10.1016/S0074-7696(08)61622-8 CrossRefPubMedGoogle Scholar
  34. Pietrangelo T, D’Amelio L, Doria C, Mancinelli R, Fulle S, Fano G (2011) Tiny percutaneous needle biopsy: an efficient method for studying cellular and molecular aspects of skeletal muscle in humans. Int J Mol Med 27(3):361–367. doi: 10.3892/ijmm.2010.582 CrossRefPubMedGoogle Scholar
  35. Raue U, Terpstra B, Williamson DL, Gallagher PM, Trappe SW (2005) Effects of short-term concentric vs. eccentric resistance training on single muscle fiber MHC distribution in humans. Int J Sports Med 26(5):339–343. doi: 10.1055/s-2004-821041 CrossRefPubMedGoogle Scholar
  36. Raue U, Trappe TA, Estrem ST, Qian HR, Helvering LM, Smith RC, Trappe S (2012) Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J Appl Physiol 112(10):1625–1636. doi: 10.1152/japplphysiol.00435.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Townsend JR, Hoffman JR, Fragala MS, Oliveira LP, Jajtner AR, Fukuda DH, Stout JR (2015) A microbiopsy method for immunohistological and morphological analysis: a pilot study. Med Sci Sports Exerc. doi: 10.1249/MSS.0000000000000772 PubMedGoogle Scholar
  38. Trappe S, Costill D, Thomas R (2000) Effect of swim taper on whole muscle and single muscle fiber contractile properties. Med Sci Sports Exerc 32(12):48–56. doi: 10.1097/00005768-20010100-00009 PubMedGoogle Scholar
  39. Trappe S, Trappe T, Gallagher P, Harber M, Alkner B, Tesch P (2004) Human single muscle fibre function with 84 day bed-rest and resistance exercise. J Physiol 557(Pt 2):501–513. doi: 10.1113/jphysiol.2004.062166 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vescovo G, Serafini F, Facchin L, Tenderini P, Carraro U, Dalla Libera L, Catani C, Ambrosio GB (1996) Specific changes in skeletal muscle myosin heavy chain composition in cardiac failure: differences compared with disuse atrophy as assessed on microbiopsies by high resolution electrophoresis. Heart 76(4):337–343. doi: 10.1136/htr.76.4.337 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Widrick JJ, Stelzer JE, Shoepe TC, Garner DP (2002) Functional properties of human muscle fibers after short-term resistance exercise training. Am J Physiol Regul Integr Comp Physiol 283(2):R408–R416. doi: 10.1152/ajpregu.00120.2002 CrossRefPubMedGoogle Scholar
  42. Williamson DL, Godard MP, Porter DA, Costill DL, Trappe SW (2000) Progressive resistance training reduces myosin heavy chain coexpression in single muscle fibers from older men. J Appl Physiol 88(2):627–633PubMedGoogle Scholar
  43. Williamson DL, Gallagher PM, Carroll CC, Raue U, Trappe SW (2001) Reduction in hybrid single muscle fiber proportions with resistance training in humans. J Appl Physiol 91(5):1955–1961PubMedGoogle Scholar
  44. Yang Y, Jemiolo B, Trappe S (2006) Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. J Appl Physiol 101(5):1442–1450. doi: 10.1152/japplphysiol.00438.2006 CrossRefPubMedGoogle Scholar
  45. Zhou MY, Klitgaard H, Saltin B, Roy RR, Edgerton VR, Gollnick PD (1995) Myosin heavy chain isoforms of human muscle after short-term spaceflight. J Appl Physiol 78(5):1740–1744PubMedGoogle Scholar
  46. Zierath JR, Hawley JA (2004) Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2(10):e348. doi: 10.1371/journal.pbio.0020348 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kevin A. Murach
    • 1
  • James R. Bagley
    • 2
  • Kathryn A. McLeland
    • 3
  • Jose A. Arevalo
    • 3
  • Anthony B. Ciccone
    • 3
  • Kylie K. Malyszek
    • 3
  • Yuan Wen
    • 4
  • Andrew J. Galpin
    • 3
  1. 1.Department of Rehabilitation Sciences, Center for Muscle Biology, College of Health SciencesUniversity of Kentucky, MS-508 Chandler Medical CenterLexingtonUSA
  2. 2.Muscle Physiology Laboratory, Department of KinesiologySan Francisco State UniversitySan FranciscoUSA
  3. 3.Biochemistry and Molecular Exercise Physiology Laboratory, Department of Kinesiology, Center for Sport PerformanceCalifornia State University, FullertonFullertonUSA
  4. 4.Department of PhysiologyUniversity of KentuckyLexingtonUSA

Personalised recommendations