Journal of Muscle Research and Cell Motility

, Volume 36, Issue 4–5, pp 305–315 | Cite as

Focal adhesion kinase and its role in skeletal muscle

  • Zachary A. Graham
  • Philip M. Gallagher
  • Christopher P. Cardozo


Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth pathways. Changes in FAK expression and phosphorylation have been found to correlate to specific developmental states in myoblast differentiation, muscle fiber formation and muscle size in response to loading and unloading. With the capability to regulate costamere formation, hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important in regulating muscle cell health.


Focal adhesion kinase Hypertrophy Muscle development Exercise 



Focal adhesion kinase


Phosphatidylinositol-3 kinase


Extracellular signal-related kinase 1/2


Mechanistic target of rapamycin


Spinal cord injury


Protein kinase C


Extracellular matrix


Insulin-like growth factor 1


4.1 ezrin, radixin, moesin domain


Focal adhesion targeting


Methyl CpG-binding protein 2


Focal adhesion kinase-related non-kinase (FRNK)



This work was supported by a Veterans Affairs Rehabilitation Research and Development Service grant (B9212C) and the James J. Peters VA Medical Center, where Dr. Cardozo is a member of the Medical-Surgical Service and Dr. Graham is a member of the Research Service.


  1. Anastasi G et al (2008) Costameric proteins in human skeletal muscle during muscular inactivity. J Anat 213:284–295. doi: 10.1111/j.1469-7580.2008.00921.x PubMedCentralCrossRefPubMedGoogle Scholar
  2. Baar K, Esser K (1999) Phosphorylation of p70S6K corelates with increased muscle mass following resistance exercise. Am J Cell Physiol 276:120–127Google Scholar
  3. Baar K, Nader G, Bodine S (2006) Resistance exercise, muscle loading/unloading and the control of muscle mass. Essays Biochem 42:61–74. doi: 10.1042/bse0420061 CrossRefPubMedGoogle Scholar
  4. Bae GU et al (2009) Neogenin regulates skeletal myofiber size and focal adhesion kinase and extracellular signal-regulated kinase activities in vivo and in vitro. Mol Biol Cell 20:4920–4931. doi: 10.1091/mbc.E09-06-0491 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Baines AJ, Lu HC, Bennett PM (2014) The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. Biochim Biophys Acta 1838:605–619. doi: 10.1016/j.bbamem.2013.05.030 CrossRefPubMedGoogle Scholar
  6. Balaban NQ et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472. doi: 10.1038/35074532 CrossRefPubMedGoogle Scholar
  7. Bisht B, Dey CS (2008) Focal Adhesion Kinase contributes to insulin-induced actin reorganization into a mesh harboring Glucose transporter-4 in insulin resistant skeletal muscle cells. BMC Cell Biol 9:48. doi: 10.1186/1471-2121-9-48 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bisht B, Goel HL, Dey CS (2007) Focal adhesion kinase regulates insulin resistance in skeletal muscle. Diabetologia 50:1058–1069. doi: 10.1007/s00125-007-0591-6 CrossRefPubMedGoogle Scholar
  9. Bloch RJ, Gonzalez-Serratos H (2003) Lateral force transmission across costameres in skeletal muscle. Exerc Sport Sci Rev 31:73–78CrossRefPubMedGoogle Scholar
  10. Bodine SC (2006) mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc 38:1950–1957. doi: 10.1249/01.mss.0000233797.24035.35 CrossRefPubMedGoogle Scholar
  11. Boppart MD, Hirshman MF, Sakamoto K, Fielding RA, Goodyear LJ (2001) Static stretch increases c-Jun NH2-terminal kinase activity and p38 phosphorylation in rat skeletal muscle. Am J Physiol Cell Physiol 280:C352–C358PubMedGoogle Scholar
  12. Boppart MD, Burkin D, Kaufman SJ (2011) Activation of AKT signaling promotes cell growth and survival in α7β1 integrin-mediated alleviation of muscular dystrophy. Biochim Biophys Acta 1812:439–446PubMedCentralCrossRefPubMedGoogle Scholar
  13. Burkholder TJ (2007) Mechanotransduction in skeletal muscle. Front Biosci 12:174–191PubMedCentralCrossRefPubMedGoogle Scholar
  14. Burkin DJ, Kaufman SJ (1999) The alpha7beta1 integrin in muscle development and disease. Cell Tissue Res 296:183–190CrossRefPubMedGoogle Scholar
  15. Cai X et al (2008) Spatial and temporal regulation of focal adhesion kinase activity in living cells. Mol Cell Biol 28:201–214. doi: 10.1128/mcb.01324-07 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Chaillou T, Lee JD, England JH, Esser KA, McCarthy JJ (2013) Time course of gene expression during mouse skeletal muscle hypertrophy. J Appl Physiol (1985) 115:1065–1074. doi: 10.1152/japplphysiol.00611.2013 CrossRefGoogle Scholar
  17. Chen HC, Appeddu PA, Isoda H, Guan JL (1996) Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3’-kinase. J Biol Chem 271:26329–26334CrossRefPubMedGoogle Scholar
  18. Clemente CF, Corat MA, Saad ST, Franchini KG (2005) Differentiation of C2C12 myoblasts is critically regulated by FAK signaling. Am J Physiol Regul Integr Comp Physiol 289:R862–R870. doi: 10.1152/ajpregu.00348.2004 CrossRefPubMedGoogle Scholar
  19. Cooper LA, Shen TL, Guan JL (2003) Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction. Mol Cell Biol 23:8030–8041PubMedCentralCrossRefPubMedGoogle Scholar
  20. Crane JD, Ogborn DI, Cupido C, Melov S, Hubbard A, Bourgeois JM, Tarnopolsky MA (2012) Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Sci Transl Med 4:119ra113. doi: 10.1126/scitranslmed.3002882 CrossRefGoogle Scholar
  21. Crossland H et al (2013) Focal adhesion kinase is required for IGF-I-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-associated pathway. Am J Physiol Endocrinol Metab 305:E183–E193. doi: 10.1152/ajpendo.00541.2012 PubMedCentralCrossRefPubMedGoogle Scholar
  22. de Boer MD et al (2007) The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Physiol 585:241–251. doi: 10.1113/jphysiol.2007.142828 PubMedCentralCrossRefPubMedGoogle Scholar
  23. De Deyne PG (2000) Formation of sarcomeres in developing myotubes: role of mechanical stretch and contractile activation. Am J Physiol Cell Physiol 279:C1801–C1811PubMedGoogle Scholar
  24. de Oliveira MV, Marin TM, Clemente CF, Costa AP, Judice CC, Franchini KG (2009) SHP-2 regulates myogenesis by coupling to FAK signaling pathway. FEBS Lett 583:2975–2981. doi: 10.1016/j.febslet.2009.08.022 CrossRefPubMedGoogle Scholar
  25. Del Re DP, Miyamoto S, Brown JH (2008) Focal adhesion kinase as a RhoA-activable signaling scaffold mediating Akt activation and cardiomyocyte protection. J Biol Chem 283:35622–35629. doi: 10.1074/jbc.M804036200 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Disatnik MH, Rando TA (1999) Integrin-mediated muscle cell spreading. The role of protein kinase c in outside-in and inside-out signaling and evidence of integrin cross-talk. J Biol Chem 274:32486–32492CrossRefPubMedGoogle Scholar
  27. Durieux AC, D’Antona G, Desplanches D, Freyssenet D, Klossner S, Bottinelli R, Fluck M (2009) Focal adhesion kinase is a load-dependent governor of the slow contractile and oxidative muscle phenotype. J Physiol 587:3703–3717. doi: 10.1113/jphysiol.2009.171355 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Fluck M, Carson JA, Gordon SE, Ziemiecki A, Booth FW (1999) Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol 277:C152–C162PubMedGoogle Scholar
  29. Fluck M, Li R, Valdivieso P, Linnehan RM, Castells J, Tesch P, Gustafsson T (2014a) Early changes in costameric and mitochondrial protein expression with unloading are muscle specific. Biomed Res Int 2014:519310. doi: 10.1155/2014/519310 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Fluck M, von Allmen RS, Ferrie C, Tevaearai H, Dick F (2014b) Protective effect of focal adhesion kinase against skeletal muscle reperfusion injury after acute limb ischemia. Eur J Vasc Endovasc Surg. doi: 10.1016/j.ejvs.2014.11.011 PubMedGoogle Scholar
  31. Flück M, Ziemiecki A, Billeter R, Müntener M (2002) Fibre-type specific concentration of focal adhesion kinase at the sarcolemma: influence of fibre innervation and regeneration. J Exp Biol 205:2337–2348PubMedGoogle Scholar
  32. Flueck M et al (2011) Load-sensitive adhesion factor expression in the elderly with skiing: relation to fiber type and muscle strength. Scand J Med Sci Sports 21(Suppl 1):29–38. doi: 10.1111/j.1600-0838.2011.01339.x CrossRefPubMedGoogle Scholar
  33. Frame MC, Patel H, Serrels B, Lietha D, Eck MJ (2010) The FERM domain: organizing the structure and function of FAK. Nat Rev Mol Cell Biol 11:802–814. doi: 10.1038/nrm2996 CrossRefPubMedGoogle Scholar
  34. Franchini KG (2012) Focal adhesion kinase—the basis of local hypertrophic signaling domains. J Mol Cell Cardiol 52:485–492. doi: 10.1016/j.yjmcc.2011.06.021 CrossRefPubMedGoogle Scholar
  35. Franchini KG, Torsoni AS, Soares PHA, Saad MJA (2000) Early activated of the multicomponent signaling complex associated with focal adhesion kinase induced by pressure overlaod in the rat heard. Circ Res 87:558–565CrossRefPubMedGoogle Scholar
  36. Fujita H, Nedachi T, Kanzaki M (2007) Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp Cell Res 313:1853–1865. doi: 10.1016/j.yexcr.2007.03.002 CrossRefPubMedGoogle Scholar
  37. Gan B, Yoo Y, Guan JL (2006) Association of focal adhesion kinase with tuberous sclerosis complex 2 in the regulation of s6 kinase activation and cell growth. J Biol Chem 281:37321–37329. doi: 10.1074/jbc.M605241200 CrossRefPubMedGoogle Scholar
  38. Gautel M (2011) Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch 462:119–134. doi: 10.1007/s00424-011-0946-1 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Glover EI, Oates BR, Tang TE, Moore DR, Tarnopolsky MA, Phillips SM (2008a) Resistance training decreases eIF2Bε phosphorylation and potentiates the feeding-induced stimulation of p70s6k and rpS6 in young men. Am J Physiol Regul Integr Comp Physiol 295:604–610CrossRefGoogle Scholar
  40. Glover EI et al (2008b) Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. J Physiol 586:6049–6061. doi: 10.1113/jphysiol.2008.160333 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Goel HL, Dey CS (2002a) Focal adhesion kinase tyrosine phosphorylation is associated with myogenesis and modulated by insulin. Cell Prolif 35:131–142CrossRefPubMedGoogle Scholar
  42. Goel HL, Dey CS (2002b) PKC-regulated myogenesis is associated with increased tyrosine phosphorylation of FAK, Cas, and paxillin, formation of Cas-CRK complex, and JNK activation. Differentiation 70:257–271. doi: 10.1046/j.1432-0436.2002.700604.x CrossRefPubMedGoogle Scholar
  43. Goodman CA, Mayhew DL, Hornberger TA (2011) Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 23:1896–1906. doi: 10.1016/j.cellsig.2011.07.013 PubMedCentralCrossRefPubMedGoogle Scholar
  44. Gordon SE, Fluck M, Booth FW (2001) Selected contribution: skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. J Appl Physiol 90:1174–1183 discussion 1165 PubMedGoogle Scholar
  45. Graham ZA, Touchberry CD, Gupte AA, Bomhoff GL, Geiger PC, Gallagher PM (2015) Changes in alpha7beta1 integrin signaling after eccentric exercise in heat-shocked rat soleus. Muscle Nerve 51:562–568. doi: 10.1002/mus.24324 CrossRefPubMedGoogle Scholar
  46. Gupta A, Dey CS (2009) PTEN and SHIP2 regulates PI3K/Akt pathway through focal adhesion kinase. Mol Cell Endocrinol 309:55–62. doi: 10.1016/j.mce.2009.05.018 CrossRefPubMedGoogle Scholar
  47. Hall JE, Fu W, Schaller MD (2011) Focal adhesion kinase: exploring Fak structure to gain insight into function. Int Rev Cell Mol Biol 288:185–225. doi: 10.1016/B978-0-12-386041-5.00005-4 CrossRefPubMedGoogle Scholar
  48. Han JW, Lee HJ, Bae GU, Kang JS (2011) Promyogenic function of Integrin/FAK signaling is mediated by Cdo, Cdc42 and MyoD. Cell Signal 23:1162–1169. doi: 10.1016/j.cellsig.2011.03.001 CrossRefPubMedGoogle Scholar
  49. Hanks SK, Ryzhova L, Shin NY, Brabek J (2003) Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci 8:D982–D996. doi: 10.2741/1114 CrossRefPubMedGoogle Scholar
  50. Hildebrand JD, Schaller MD, Parsons JT (1993) Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions. J Cell Biol 123:993–1005CrossRefPubMedGoogle Scholar
  51. Hornberger TA, Armstrong DD, Koh TJ, Burkholder TJ, Esser KA (2005) Intracellular signaling specificity in response to uniaxial vs. multiaxial stretch: implications for mechanotransduction. Am J Physiol Cell Physiol 288:C185–C194. doi: 10.1152/ajpcell.00207.2004 PubMedGoogle Scholar
  52. Huang D, Khoe M, Ilic D, Bryer-Ash M (2006) Reduced expression of focal adhesion kinase disrupts insulin action in skeletal muscle cells. Endocrinology 147:3333–3343. doi: 10.1210/en.2005-0382 CrossRefPubMedGoogle Scholar
  53. Klossner S, Durieux AC, Freyssenet D, Flueck M (2009) Mechano-transduction to muscle protein synthesis is modulated by FAK. Eur J Appl Physiol 106:389–398. doi: 10.1007/s00421-009-1032-7 CrossRefPubMedGoogle Scholar
  54. Klossner S, Li R, Ruoss S, Durieux AC, Fluck M (2013) Quantitative changes in focal adhesion kinase and its inhibitor, FRNK, drive load-dependent expression of costamere components. Am J Physiol Regul Integr Comp Physiol. doi: 10.1152/ajpregu.00007.2013 PubMedGoogle Scholar
  55. Kumar A, Murphy R, Robinson P, Wei L, Boriek AM (2004) Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-kappaB transcription factor. FASEB J 18:1524–1535. doi: 10.1096/fj.04-2414com CrossRefPubMedGoogle Scholar
  56. Lai Wing Sun K, Correia JP, Kennedy TE (2011) Netrins: versatile extracellular cues with diverse functions. Development 138:2153–2169. doi: 10.1242/dev.044529 CrossRefPubMedGoogle Scholar
  57. Lamon S, Wallace MA, Russell AP (2014) The STARS signaling pathway: a key regulator of skeletal muscle function. Pflugers Arch 466:1659–1671. doi: 10.1007/s00424-014-1475-5 CrossRefPubMedGoogle Scholar
  58. Li W et al (2004) Activation of FAK and Src are receptor-proximal events required for netrin signaling. Nat Neurosci 7:1213–1221. doi: 10.1038/nn1329 PubMedCentralCrossRefPubMedGoogle Scholar
  59. Li R et al (2013) Costamere remodeling with muscle loading and unloading in healthy young men. J Anat. doi: 10.1111/joa.12101 PubMedCentralPubMedGoogle Scholar
  60. Lietha D, Cai X, Ceccarelli DF, Li Y, Schaller MD, Eck MJ (2007) Structural basis for the autoinhibition of focal adhesion kinase. Cell 129:1177–1187. doi: 10.1016/j.cell.2007.05.041 PubMedCentralCrossRefPubMedGoogle Scholar
  61. Luo SW et al (2009) Regulation of heterochromatin remodelling and myogenin expression during muscle differentiation by FAK interaction with MBD2. EMBO J 28:2568–2582. doi: 10.1038/emboj.2009.178 PubMedCentralCrossRefPubMedGoogle Scholar
  62. Madaro L et al (2011) PKCtheta signaling is required for myoblast fusion by regulating the expression of caveolin-3 and beta1D integrin upstream focal adhesion kinase. Mol Biol Cell 22:1409–1419. doi: 10.1091/mbc.E10-10-0821 PubMedCentralCrossRefPubMedGoogle Scholar
  63. Mayer U et al (1997) Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat Genet 17:318–323. doi: 10.1038/ng1197-318 CrossRefPubMedGoogle Scholar
  64. McClung JM, Thompson RW, Lowe LL, Carson JA (2004) RhoA expression during recovery from skeletal muscle disuse. J Appl Physiol (1985) 96:1341–1348. doi: 10.1152/japplphysiol.01015.2003 CrossRefGoogle Scholar
  65. Moorwood C, Philippou A, Spinazzola J, Keyser B, Macarak EJ, Barton ER (2014) Absence of gamma-sarcoglycan alters the response of p70S6 kinase to mechanical perturbation in murine skeletal muscle. Skelet Muscle 4:13. doi: 10.1186/2044-5040-4-13 PubMedCentralCrossRefPubMedGoogle Scholar
  66. Nguyen N, Yi JS, Park H, Lee JS, Ko YG (2014) Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis. J Biol Chem 289:3209–3216. doi: 10.1074/jbc.M113.525154 PubMedCentralCrossRefPubMedGoogle Scholar
  67. Orr AW, Murphy-Ullrich JE (2004) Regulation of endothelial cell function BY FAK and PYK2. Front Biosci 9:1254–1266CrossRefPubMedGoogle Scholar
  68. Pardo JV, Siliciano JD, Craig SW (1983) A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci USA 80:1008–1012PubMedCentralCrossRefPubMedGoogle Scholar
  69. Parsons JT (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116:1409–1416CrossRefPubMedGoogle Scholar
  70. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406. doi: 10.1152/physrev.90100.2007 CrossRefPubMedGoogle Scholar
  71. Quach NL, Rando TA (2006) Focal adhesion kinase is essential for constamerogenesis in cultured skeletal muscle cells. Dev Biol 293:38–52CrossRefPubMedGoogle Scholar
  72. Quach NL, Biressi S, Reichardt LF, Keller C, Rando TA (2009) Focal adhesion kinase signaling regulates the expression of caveolin 3 and beta1 integrin, genes essential for normal myoblast fusion. Mol Biol Cell 20:3422–3435. doi: 10.1091/mbc.E09-02-0175 PubMedCentralCrossRefPubMedGoogle Scholar
  73. Rahnert JA, Burkholder TJ (2013) High-frequency electrical stimulation reveals a p38-mTOR signaling module correlated with force-time integral. J Exp Biol 216:2619–2631. doi: 10.1242/jeb.080705 PubMedCentralCrossRefPubMedGoogle Scholar
  74. Reiling JH, Sabatini DM (2006) Stress and mTORture signaling. Oncogene 25:6373–6383. doi: 10.1038/sj.onc.1209889 CrossRefPubMedGoogle Scholar
  75. Sakuma K, Nishikawa J, Nakao R, Nakano H, Sano M, Yasuhara M (2003) Serum response factor plays an important role in the mechanically overloaded plantaris muscle of rats. Histochem Cell Biol 119:149–160. doi: 10.1007/s00418-003-0499-2 PubMedGoogle Scholar
  76. Sakuma K, Nakao R, Inashima S, Hirata M, Kubo T, Yasuhara M (2004) Marked reduction of focal adhesion kinase, serum response factor and myocyte enhancer factor 2C, but increase in RhoA and myostatin in the hindlimb dy mouse muscles. Acta Neuropathol 108:241–249. doi: 10.1007/s00401-004-0884-5 CrossRefPubMedGoogle Scholar
  77. Salanova M et al (2014) Disuse deterioration of human skeletal muscle challenged by resistive exercise superimposed with vibration: evidence from structural and proteomic analysis. FASEB J. doi: 10.1096/fj.14-252825 PubMedGoogle Scholar
  78. Sastry SK, Lakonishok M, Wu S, Truong TQ, Huttenlocher A, Turner CE, Horwitz AF (1999) Quantitative changes in integrin and focal adhesion signaling regulate myoblast cell cycle withdrawal. J Cell Biol 144:1295–1309PubMedCentralCrossRefPubMedGoogle Scholar
  79. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT (1994) Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 14:1680–1688PubMedCentralCrossRefPubMedGoogle Scholar
  80. Schaller M, Otey CA, Hildebrand JD, Parsons JT (1995) Focal adhesion kinase and paxillin bind to peptides mimicking β integrin cytoplasmic domains. J Cell Biol 130:1181–1187CrossRefPubMedGoogle Scholar
  81. Shi H, Scheffler JM, Zeng C, Pleitner JM, Hannon KM, Grant AL, Gerrard DE (2009) Mitogen-activated protein kinase signaling is necessary for the maintenance of skeletal muscle mass. Am J Physiol Cell Physiol 296:C1040–C1048. doi: 10.1152/ajpcell.00475.2008 CrossRefPubMedGoogle Scholar
  82. Tesch PA, von Walden F, Gustafsson T, Linnehan RM, Trappe TA (2008) Skeletal muscle proteolysis in response to short-term unloading in humans. J Appl Physiol (1985) 105:902–906. doi: 10.1152/japplphysiol.90558.2008 PubMedCentralCrossRefGoogle Scholar
  83. Tidball JG (2005) Mechanical signal transduction in skeletal muscle growth and adaptation. J Appl Physiol (1985) 98:1900–1908. doi: 10.1152/japplphysiol.01178.2004 CrossRefGoogle Scholar
  84. Torsoni AS, Constancio SS, Nadruz W, Hanks SK, Franchini KG (2003) Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res 93:140–147. doi: 10.1161/01.Res.0000081595.25297.1b CrossRefPubMedGoogle Scholar
  85. Torsoni AS, Marin TM, Velloso LA, Franchini KG (2005) RhoA/ROCK signaling is criticial to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol 289:1488–1496Google Scholar
  86. Tran TH, Shi X, Zaia J, Ai X (2012) Heparan sulfate 6-O-endosulfatases (Sulfs) coordinate the Wnt signaling pathways to regulate myoblast fusion during skeletal muscle regeneration. J Biol Chem 287:32651–32664. doi: 10.1074/jbc.M112.353243 PubMedCentralCrossRefPubMedGoogle Scholar
  87. Tseng WP, Su CM, Tang CH (2010) FAK activation is required for TNF-alpha-induced IL-6 production in myoblasts. J Cell Physiol 223:389–396. doi: 10.1002/jcp.22047 PubMedGoogle Scholar
  88. Wang HV et al (2008) Integrin-linked kinase stabilizes myotendinous junctions and protects muscle from stress-induced damage. J Cell Biol 180:1037–1049. doi: 10.1083/jcb.200707175 PubMedCentralCrossRefPubMedGoogle Scholar
  89. Wei L, Zhou W, Croissant JD, Johansen FE, Prywes R, Balasubramanyam A, Schwartz RJ (1998) RhoA signaling via serum response factor plays an obligatory role in myogenic differentiation. J Biol Chem 273:30287–30294CrossRefPubMedGoogle Scholar
  90. Wei L, Zhou W, Wang L, Schwartz RJ (2000) beta(1)-integrin and PI 3-kinase regulate RhoA-dependent activation of skeletal alpha-actin promoter in myoblasts. Am J Physiol Heart Circ Physiol 278:H1736–H1743PubMedGoogle Scholar
  91. Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, Rennie MJ (2008) Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol 586:3701–3717. doi: 10.1113/jphysiol.2008.153916 PubMedCentralCrossRefPubMedGoogle Scholar
  92. Williamson D, Gallagher P, Harber M, Hollon C, Trappe S (2003) Mitogen-activated protein kinase (MAPK) pathway activation: effects of age and acute exercise on human skeletal muscle. J Physiol 547:977–987. doi: 10.1113/jphysiol.2002.036673 PubMedCentralCrossRefPubMedGoogle Scholar
  93. Wilson OJ, Shaw CS, Sherlock M, Stewart PM, Wagenmakers AJ (2012) Immunofluorescent visualisation of focal adhesion kinase in human skeletal muscle and its associated microvasculature. Histochem Cell Biol 138:617–626. doi: 10.1007/s00418-012-0980-x CrossRefPubMedGoogle Scholar
  94. Wilson OJ, Bradley H, Shaw CS, Wagenmakers AJ (2014) Paxillin and focal adhesion kinase colocalise in human skeletal muscle and its associated microvasculature. Histochem Cell Biol 142:245–256. doi: 10.1007/s00418-014-1212-3 CrossRefPubMedGoogle Scholar
  95. Yarar-Fisher C, Bickel CS, Kelly NA, Windham ST, McLain AB, Bamman MM (2014) Mechanosensitivity may be enhanced in skeletal muscles of spinal cord-injured versus able-bodied men. Muscle Nerve 50:599–601. doi: 10.1002/mus.24248 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2015

Authors and Affiliations

  • Zachary A. Graham
    • 1
    • 3
  • Philip M. Gallagher
    • 2
  • Christopher P. Cardozo
    • 1
    • 3
    • 4
    • 5
  1. 1.Center of Excellence for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxUSA
  2. 2.Applied Physiology LaboratoryUniversity of KansasLawrenceUSA
  3. 3.Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkUSA
  4. 4.Department of Rehabilitation MedicineIcahn School of Medicine at Mount SinaiNew YorkUSA
  5. 5.Department of Pharmacology and Systems TherapeuticsIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations