Effects of fluvastatin and coenzyme Q10 on skeletal muscle in normo- and hypercholesterolaemic rats

  • J. Vincze
  • Á. Jenes
  • M. Füzi
  • J. Almássy
  • R. Németh
  • G. Szigeti
  • B. Dienes
  • Z. Gaál
  • P. Szentesi
  • I. Jóna
  • P. Kertai
  • G. Paragh
  • L. Csernoch
Original Paper

Abstract

Myalgia and muscle weakness may appreciably contribute to the poor adherence to statin therapy. Although the pathomechanism of statin-induced myopathy is not completely understood, changes in calcium homeostasis and reduced coenzyme Q10 levels are hypothesized to play important roles. In our experiments, fluvastatin and/or coenzyme Q10 was administered chronically to normocholesterolaemic or hypercholaestherolaemic rats, and the modifications of the calcium homeostasis and the strength of their muscles were investigated. While hypercholesterolaemia did not change the frequency of sparks, fluvastatin increased it on muscles both from normocholesterolaemic and from hypercholesterolaemic rats. This effect, however, was not mediated by a chronic modification of the ryanodine receptor as shown by the unchanged ryanodine binding in the latter group. While coenzyme Q10 supplementation significantly reduced the frequency of the spontaneous calcium release events, it did not affect their amplitude and spatial spread in muscles from fluvastatin-treated rats. This indicates that coenzyme Q10 supplementation prevented the spark frequency increasing effect of fluvastatin without having a major effect on the amount of calcium released during individual sparks. In conclusion, we have found that fluvastatin, independently of the cholesterol level in the blood, consistently and specifically increased the frequency of calcium sparks in skeletal muscle cells, an effect which could be prevented by the addition of coenzyme Q10 to the diet. These results support theories favouring the role of calcium handling in the pathophysiology of statin-induced myopathy and provide a possible pathway for the protective effect of coenzyme Q10 in statin treated patients symptomatic of this condition.

Keywords

Skeletal muscle Calcium homeostase Force Spark Statin Q10 Myopathy 

References

  1. Antons KA, Williams CD, Baker SK, Phillips PS (2006) Clinical perspectives of statin-induced rhabdomyolysis. Am J Med 119:400–409PubMedCrossRefGoogle Scholar
  2. Banach M, Serban C, Sahebkar A, Ursoniu S, Rysz J, Muntner P, Toth PP, Jones SR, Rizzo M, Glasser SP, Lip GY, Dragan S, Mikhailidis DP (2015) Effects of coenzyme Q10 on statin-induced myopathy: a meta-analysis of randomized controlled trials. Mayo Clin Proc 90(1):24–34PubMedCrossRefGoogle Scholar
  3. Bookstaver DA, Burkhalter NA, Hatzigeorgiou C (2012) Effect of coenzyme Q10 supplementation on statin-induced myalgias. Am J Cardiol 110(4):526–529PubMedCrossRefGoogle Scholar
  4. Bruckert E, Hayem G, Dejager S, Yau C, Bégaud B (2005) Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—the PRIMO study. Cardiovasc Drugs Ther 19(6):403–414PubMedCrossRefGoogle Scholar
  5. Csernoch L, Szentesi P, Sárközi S, Szegedi C, Jóna I, Kovács L (1999) Effects of tetracaine on sarcoplasmic calcium release in mammalian skeletal muscle fibres. J Physiol 515(3):843–857PubMedCentralPubMedCrossRefGoogle Scholar
  6. Daugird AJ, Crowell K, Saseen J (2003) Clinical inquiries. Do statins cause myopathy? J Fam Pract 52:973–977PubMedGoogle Scholar
  7. EFSA Panel on Dietetic Products, Nutrition and Allergies (2010) Scientific Opinion on the substantiation of health claims related to coenzyme Q10 and contribution to normal energy-yielding metabolism (ID 1508, 1512, 1720, 1912, 4668), maintenance of normal blood pressure (ID 1509, 1721, 1911), protection of DNA, proteins and lipids from oxidative damage (ID 1510), contribution to normal cognitive function (ID 1511), maintenance of normal blood cholesterol concentrations (ID 1721) and increase in endurance capacity and/or endurance performance (ID 1913) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 8(10):1793Google Scholar
  8. Evans CD, Eurich DT, Lamb DA, Taylor JG, Jorgenson DJ, Semchuk WM, Mansell KD, Blackburn DF (2009) Retrospective observational assessment of statin adherence among subjects patronizing different types of community pharmacies in Canada. J Manag Care Pharm 15(6):476–484PubMedGoogle Scholar
  9. Fernandez G, Spatz ES, Jablecki C, Phillips PS (2011) Statin myopathy: a common dilemma not reflected in clinical trials. Clevel Clin J Med 78(6):393–403CrossRefGoogle Scholar
  10. Füzi M, Palicz Z, Vincze J, Cseri J, Szombathy Z, Kovács I, Oláh A, Szentesi P, Kertai P, Paragh G, Csernoch L (2012) Fluvastatin-induced alterations of skeletal muscle function in hypercholesterolaemic rats. J Muscle Res Cell Motil 32(6):391–401PubMedCrossRefGoogle Scholar
  11. Gerber BL (2013) In vivo evaluation of atherosclerotic plaque inflammation and of anti-inflammatory effects of statins by 18F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 62(10):918–920PubMedCrossRefGoogle Scholar
  12. Glauert AM, Dingle JT, Lucy JA (1962) Action of saponin on biological cell membranes. Nature 196:953–955CrossRefGoogle Scholar
  13. Guarini G, Marzilli M (2013) Defining the role of high-dose statins in PCI. Am J Cardiovasc Drugs 3:189–197CrossRefGoogle Scholar
  14. Herrmann-Frank A, Richter M, Sarközi S, Mohr U, Lehmann-Horn F (1996) 4-Chloro-m-cresol, a potent and specific activator of the skeletal muscle ryanodine receptor. Biochim Biophys Acta 1289(1):31–40PubMedCrossRefGoogle Scholar
  15. Inoue R, Tanabe M, Kono K, Maruyama K, Ikemoto T, Endo M (2003) Ca2+-releasing effect of cerivastatin on the sarcoplasmic reticulum of mouse and rat skeletal muscle fibers. J Pharmacol Sci 93(3):279–288PubMedCrossRefGoogle Scholar
  16. Isaeva EV, Shkryl VM, Shirokova N (2005) Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle. J Physiol 565(Pt 3):855–872PubMedCentralPubMedCrossRefGoogle Scholar
  17. Jackevicius CA, Mamdani M, Tu JV (2002) Adherence with statin therapy in elderly patients with and without acute coronary syndromes. JAMA 288(4):462–467PubMedCrossRefGoogle Scholar
  18. Johnson TE, Zhang X, Bleicher KB, Dysart G, Loughlin AF, Schaefer WH, Umbenhauer DR (2004) Statins induce apoptosis in rat and human myotube cultures by inhibiting protein geranylgeranylation but not ubiquinone. Toxicol Appl Pharmacol 200(3):237–250PubMedCrossRefGoogle Scholar
  19. Knoblauch M, Dagnino-Acosta A, Hamilton SL (2013) Mice with RyR1 mutation (Y524S) undergo hypermetabolic response to simvastatin. Skelet Muscle 3(1):22PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kon M, Kimura F, Akimoto T, Tanabe K, Murase Y, Ikemune S, Kono I (2007) Effect of Coenzyme Q10 supplementation on exercise-induced muscular injury of rats. Exerc Immunol Rev 13:76–88PubMedGoogle Scholar
  21. Lanner JT, Georgiou DK, Dagnino-Acosta A, Ainbinder A, Cheng Q, Joshi AD, Chen Z, Yarotskyy V, Oakes JM, Lee CS, Monroe TO, Santillan A, Dong K, Goodyear L, Ismailov II, Rodney GG, Dirksen RT, Hamilton SL (2012) AICAR prevents heat-induced sudden death in RyR1 mutant mice independent of AMPK activation. Nat Med 18(2):244–251PubMedCentralPubMedCrossRefGoogle Scholar
  22. Littlefield N, Beckstrand RL, Luthy KE (2014) Statins’ effect on plasma levels of coenzyme Q10 and improvement in myopathy with supplementation. J Am Assoc Nurse Pract 26(2):85–90PubMedGoogle Scholar
  23. Löhn M, Fürstenau M, Sagach V, Elger M, Schulze W, Luft FC, Haller H, Gollasch M (2000) Ignition of calcium sparks in arterial and cardiac muscle through caveolae. Circ Res 87(11):1034–1039PubMedCrossRefGoogle Scholar
  24. Lotteau S, MacDougall D, Steele D, Calaghan S (2015) Statin induced myopathy: a role for mitochondrial Ca2D and no in enhanced sarcoplasmic reticulum Ca2+ Leak. Biophys J 108(2):567aCrossRefGoogle Scholar
  25. Lukács B, Sztretye M, Almássy J, Sárközi S, Dienes B, Mabrouk K, Simut C, Szabó L, Szentesi P, De Waard M, Ronjat M, Jóna I, Csernoch L (2008) Charged surface area of maurocalcine determines its interaction with the skeletal ryanodine receptor. Biophys J 95(7):3497–3509PubMedCentralPubMedCrossRefGoogle Scholar
  26. Marcoff L, Thompson PD (2007) The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol 49(23):2231–2237PubMedCrossRefGoogle Scholar
  27. Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, Voysey M, Gray A, Collins R, Baigent C (2012) The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380(9841):581–590PubMedCrossRefGoogle Scholar
  28. Nakahara K, Kuriyama M, Sonoda Y, Yoshidome H, Nakagawa H, Fujiyama J, Higuchi I, Osame M (1998) Myopathy induced by HMG-CoA reductase inhibitors in rabbits: a pathological, electrophysiological, and biochemical study. Toxicol Appl Pharmacol 152(1):99–106PubMedCrossRefGoogle Scholar
  29. Oddoux S, Brocard J, Schweitzer A, Szentesi P, Giannesini B, Brocard J, Fauré J, Pernet-Gallay K, Bendahan D, Lunardi J, Csernoch L, Marty I (2009) Triadin deletion induces impaired skeletal muscle function. J Biol Chem 284(50):34918–34929PubMedCentralPubMedCrossRefGoogle Scholar
  30. Padra JT, Seres I, Oláh A, Fenyvesi F, Paragh G, Paragh G, Csernoch L, Fóris G, Kertai P (2014) A comparative study on dyslipidaemia inducing diets in various rat strains. Acta Physiol Hung 101(2):250–258PubMedCrossRefGoogle Scholar
  31. Päivä H, Thelen KM, Van Coster R, Smet J, De Paepe B, Mattila KM, Laakso J, Lehtimäki T, von Bergmann K, Lütjohann D, Laaksonen R (2005) High-dose statins and skeletal muscle metabolism in humans: a randomized, controlled trial. Clin Pharmacol Ther 78(1):60–68PubMedCrossRefGoogle Scholar
  32. Sacher J, Weigl L, Werner M, Szegedi C, Hohenegger M (2005) Delineation of myotoxicity induced by 3-hydroxy-3-methylglutaryl CoA reductase inhibitors in human skeletal muscle cells. J Pharmacol Exp Ther 314(3):1032–1041PubMedCrossRefGoogle Scholar
  33. Salarieh A, Soler AP, Axiotis CA (2004) Overexpression of neural cell adhesion molecule in regenerative muscle fibers in 3-hydroxy-3-methylglutaryl coenzyme: a reductase inhibitor-induced rhabdomyolysis. Appl Immunohistochem Mol Morphol 12(3):234–239PubMedCrossRefGoogle Scholar
  34. Sárközi S, Szegedi C, Lukács B, Ronjat M, Jóna I (2005) Effect of gadolinium on the ryanodine receptor/sarcoplasmic reticulum calcium release channel of skeletal muscle. FEBS J 272(2):464–471PubMedCrossRefGoogle Scholar
  35. Schaefer WH, Lawrence JW, Loughlin AF, Stoffregen DA, Mixson LA, Dean DC, Raab CE, Yu NX, Lankas GR, Frederick CB (2004) Evaluation of ubiquinone concentration and mitochondrial function relative to cerivastatin-induced skeletal myopathy in rats. Toxicol Appl Pharmacol 194(1):10–23PubMedCrossRefGoogle Scholar
  36. Sirvent P, Mercier J, Vassort G, Lacampagne A (2005) Simvastatin triggers mitochondria-induced Ca2 + signaling alteration in skeletal muscle. Biochem. Biophys. Res. Commun. 329(3):1067–1075PubMedCrossRefGoogle Scholar
  37. Sirvent P, Fabre O, Bordenave S, Hillaire-Buys D, Raynaud De Mauverger E, Lacampagne A, Mercier J (2012) Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins. Toxicol Appl Pharmacol 259(2):263–268PubMedCrossRefGoogle Scholar
  38. Skarlovnik A, Janić M, Lunder M, Turk M, Šabovič M (2014) Coenzyme Q10 supplementation decreases statin-related mild-to-moderate muscle symptoms: a randomized clinical study. Med Sci Monit 20:2183–2188PubMedCentralPubMedCrossRefGoogle Scholar
  39. Somodi S, Balajthy A, Szilágyi O, Pethő Z, Harangi M, Paragh G, Panyi G, Hajdu P (2013) Analysis of the K+ current in human CD4+ T lymphocytes in hypercholesterolemic state. Cell Immunol 281(1):20–26PubMedCrossRefGoogle Scholar
  40. Szabó LZ, Vincze J, Csernoch L, Szentesi P (2010) Improved spark and ember detection using stationary wavelet transforms. J Theor Biol 264(4):1279–1292PubMedCrossRefGoogle Scholar
  41. Szegedi C, Sárközi S, Herzog A, Jóna I, Varsányi M (1999) Calsequestrin: more than ‘only’ a luminal Ca2+ buffer inside the sarcoplasmic reticulum. Biochem J 337(1):19–22PubMedCentralPubMedCrossRefGoogle Scholar
  42. Szentesi P, Szappanos H, Szegedi C, Gönczi M, Jóna I, Cseri J, Kovács L, Csernoch L (2004) Altered elementary calcium release events and enhanced calcium release by thymol in rat skeletal muscle. Biophys J 86(3):1436–1453PubMedCentralPubMedCrossRefGoogle Scholar
  43. Taylor F, Huffman MD, Macedo AF, Moore TH, Burke M, Davey Smith G, Ward K, Ebrahim S (2013) Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 1:CD004816. doi:10.1002/14651858.CD004816.pub5 PubMedGoogle Scholar
  44. Taylor BA, Lorson L, White CM, Thompson PD (2015) A randomized trial of coenzyme Q10 in patients with confirmed Statin Myopathy. Atherosclerosis. 238(2):329–335PubMedCrossRefGoogle Scholar
  45. Tomlinson SS, Mangione KK (2005) Potential adverse effects of statins on muscle. Phys Ther 85:459–465PubMedGoogle Scholar
  46. Waclawik AJ, Lindal S, Engel AG (1993) Experimental lovastatin myopathy. J Neuropathol Exp Neurol 52(5):542–549PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • J. Vincze
    • 1
  • Á. Jenes
    • 1
  • M. Füzi
    • 1
  • J. Almássy
    • 1
  • R. Németh
    • 1
  • G. Szigeti
    • 1
  • B. Dienes
    • 1
  • Z. Gaál
    • 1
  • P. Szentesi
    • 1
  • I. Jóna
    • 1
  • P. Kertai
    • 2
  • G. Paragh
    • 3
  • L. Csernoch
    • 1
  1. 1.Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
  2. 2.Department of Preventive Medicine, Faculty of Public HealthUniversity of DebrecenDebrecenHungary
  3. 3.Clinical Center, Institute of MedicineUniversity of DebrecenDebrecenHungary

Personalised recommendations