Advertisement

Journal of Muscle Research and Cell Motility

, Volume 36, Issue 2, pp 155–167 | Cite as

What has the mdx mouse model of duchenne muscular dystrophy contributed to our understanding of this disease?

  • Jennifer Manning
  • Dervla O’MalleyEmail author
Review

Abstract

Duchenne muscular dystrophy (DMD) is a fatal X-chromosome linked recessive disorder caused by the truncation or deletion of the dystrophin gene. The most widely used animal model of this disease is the dystrophin-deficient mdx mouse which was first discovered 30 years ago. Despite its extensive use in DMD research, no effective treatment has yet been developed for this devastating disease. This review explores what we have learned from this mouse model regarding the pathophysiology of DMD and asks if it has a future in providing a better more thorough understanding of this disease or if it will bring us any closer to improving the outlook for DMD patients.

Keywords

Duchenne muscular dystrophy Mdx mouse Calcium Inflammation Genetic therapy Corticosteroids 

Abbreviations

Ca2+

Calcium

CRF

Corticotrophin releasing factor

CRFR

CRF receptor

CRP

C-reactive protein

GI

Gastrointestinal

HPA

Hypothalamic-pituitary-adrenal

IL

Interleukin

IL-6R

Interleukin-6 receptor

TTX

Tetrodotoxin

xIL-6R

Anti-IL-6R

GRMD

Golden retriever muscular dystrophy

DAPC

Dystrophin associated protein complex

ECG

Electrocardiogram

ACE

Angiotensin-converting enzyme

Notes

Conflict of interest

The authors have no financial, professional or personal conflicts relating to this publication.

Grant support

J.M. was part funded by the Department of Physiology, UCC and Muscular Dystrophy Ireland.

References

  1. Abdel-Salam E, Abdel-Meguid I, Korraa SS (2009) Markers of degeneration and regeneration in duchenne muscular dystrophy. Acta Myol 28(3):94–100PubMedCentralPubMedGoogle Scholar
  2. Abresch R, Seyden N, Wineinger M (1998) Quality of life. Issues for persons with neuromuscular diseases. Phys Med Rehabil Clin N Am 9(1):233–248PubMedGoogle Scholar
  3. Andreetta F et al (2003) Immunomodulation of TGF-beta1 in mdx mouse inhibits connective tissue proliferation in diaphragm but increases inflammatory response: implications for antifibrotic therapy. J Neuroimmunol, 15(5), p. IIGoogle Scholar
  4. Anderson J, Weber M, Vargas C (2000) Deflazacort increases laminin expression and myogenic repair, and induces early persistant functional gain in mdx mouse muscular dystrophy. Cell Transpl 9(4):551–564Google Scholar
  5. Aoki Y et al (2012) Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci USA 109(34):13763–13768PubMedCentralPubMedGoogle Scholar
  6. Arakia E et al (1997) Targeted disruption of exon 52 in the mouse dystrophin gene induced muscle degeneration similar to that observed in Duchenne muscular dystrophy. Biochem Biophys Res Commun 238(2):492–497Google Scholar
  7. Archer JD, Vargas CC, Anderson JE (2006) Persistent and improved functional gain in mdx dystrophic mice after treatment with l-arginine and deflaxacort. FASEB J 24:1–24Google Scholar
  8. Arechavala-Gomeza V et al (2010) Revertant fibres and dystrophin traces in duchenne muscular dystrophy: implication for clinical trials. Neuromuscul Disord 20(5):295–301PubMedGoogle Scholar
  9. Asai A et al (2007) Primary role of functional ischemia, quantitative evidence for the two-hit mechanism, and phosphodiesterase-5 inhibitor therapy in mouse muscular dystrophy. PLoS ONE 2(8):e806PubMedCentralPubMedGoogle Scholar
  10. Baccari M et al (2007) Reversal by relaxin of altered ileal spontaneous contractions in dystrophic (mdx) mice through a nitric oxide-mediated mechanism. Am J Physiol—Regul, Integr Comp Physiol 293:R662–R668Google Scholar
  11. Baltgalvis KA et al (2009) The effects of prednisolone on skeletal muscle contractility in mdx mice. Muscle Nerve 40(3):443–454PubMedCentralPubMedGoogle Scholar
  12. Barohn RJ et al (1988) Gastric hypomotility in duchenne’s muscular dystrophy. N Engl J Med 319:15–18PubMedGoogle Scholar
  13. Barohn R, Amato A, Griggs R (1998) Overview of distal myopathies: from the clinical to the molecular. Neuromuscul Disord 8(5):309–316PubMedGoogle Scholar
  14. Bates G et al (2013) Molecular, cellular, and muscle strip mechanics of the mdx mouse diaphragm. Am J Physiol Cell Physiol 304(9):C873–C880PubMedGoogle Scholar
  15. Baydur A et al (1990) Decline in respiratory function and experience with long-term assisted ventilation in advanced duchenne’s muscular dystophy. Chest 97(4):884–889PubMedGoogle Scholar
  16. Beck J et al (2006) Diaphragmatic function in advanced duchenne muscular dystrophy. Neuromuscul Disord 16:161–167PubMedGoogle Scholar
  17. Bia B et al (1999) Decreased myocardial nNOS, increased iNOS and abnormal ECGs in mouse models of duchenne muscular dystrophy. J Mol Cell Cardiol 31(10):1857–1862PubMedGoogle Scholar
  18. Blake D, Tinsley J, Davies K (1996) Utrophin: a structural and functional comparison to dystrophin. Brain Pathol 6(1):37–47PubMedGoogle Scholar
  19. Bonuccelli G et al (2003) Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins. Am J Pathol 163(4):1663–1675PubMedCentralPubMedGoogle Scholar
  20. Borrelli O et al (2005) Evolution of gastric electrical features and gastric emptying in children with duchenne and becker muscular dystrophy. Am J Gastroenterol 100(3):695–702PubMedGoogle Scholar
  21. Bothwell JE et al (2002) Duchenne muscular dystrophy-parental perceptions. Clin Pediatr 41(2):105–109Google Scholar
  22. Brunelli S et al (2007) Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy. Proc Natl Acad Sci USA 104(1):264–269PubMedCentralPubMedGoogle Scholar
  23. Bulfield G (1984) X chromosome-linked muscular dystrophy. Proc Natl Acad Sci USA 81:1189–1192PubMedCentralPubMedGoogle Scholar
  24. Byers TJ, Kunkel LM, Watkinst SC (1991) The subcellular distribution of dystrophin in mouse skeletal, cardiac, and smooth muscle. J cell Biol 115(2):411–421PubMedGoogle Scholar
  25. Campbell K et al (2010) Revertant muscle fibers expressing dystrophin do not tolerize the immune system in duchenne muscular dystrophy: lessons learned from a Phase I clinical trial. J Immunol 184:96–99Google Scholar
  26. Carlson CG, Samadi A, Siegel A (2005) Chronic treatment with agents that stabilize cytosolic IkappaB-alpha enhances survival and improves resting membrane potential in MDX muscle fibers subjected to chronic passive stretch. Neurobiol Dis 20(3):719–730PubMedGoogle Scholar
  27. Cirak S et al (2011) Exon skipping and dystrophin restoration in patients with duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378(9791):595–605PubMedCentralPubMedGoogle Scholar
  28. Collins CA, Morgan JE (2003) Duchenne’s muscular dystrophy: animal models used to investigate pathogenesis and develop therapeutic strategies. Int J Exp Pathol 84(4):165–172PubMedCentralPubMedGoogle Scholar
  29. Compton A et al (2005) The syntrophin-dystrobrevin subcomplex in human neuromuscular disorders. J Neuropathol Exp Neurol 64(4):350–361PubMedGoogle Scholar
  30. Connor TJ, Leonard BE (1998) Depression, stress and immunological activation the role of cytokines in depressive disorders. Life Sci 62(7):583–606PubMedGoogle Scholar
  31. Coulton G et al (1988) The mdx mouse skeletal muscle myopathy: II Contractile properties. Neuropathol Appl Neurobiol 14(4):299–314PubMedGoogle Scholar
  32. Cozzoli A et al (2011) Evaluation of potential synergistic action of a combined treatment with alpha-methyl-prednisolone and taurine on the mdx mouse model of duchenne muscular dystrophy. Neuropathol Appl Neurobiol 37(3):243–256PubMedGoogle Scholar
  33. Cros D et al (1989) Muscle hypertrophy in duchenne muscular dystrophy. J Neurol 236(1):43–47PubMedGoogle Scholar
  34. Dangain J, Vrbova G (1984) Muscle development in mdx mutant mice. Muscle Nerve 7(9):700–704PubMedGoogle Scholar
  35. Davies KE, Nowak KJ (2006) Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 7(10):762–773PubMedGoogle Scholar
  36. De Bruin P et al (1997) Diaphragm thickness and inspiratory strength in patients with duchenne muscular dystrophy. Thorax 52:472–475PubMedCentralPubMedGoogle Scholar
  37. Deconinck N, Dan B (2007) Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 36(1):1–7PubMedGoogle Scholar
  38. Deconinck AE et al (1997) Utrophin-dystrophin-deficient mice as a model for duchenne muscular dystrophy. Cell 90(4):717–727PubMedGoogle Scholar
  39. Di Certo MG et al (2010) The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice. Hum Mol Genet 19(5):752–760PubMedGoogle Scholar
  40. Dinan D et al (2003) Gastric wall weakening resulting in separate perforations in a patient with duchenne’ s muscular dystrophy. Am J Roentgenol 181:807–808Google Scholar
  41. Du Y et al (2013) Sputum Interleukin-6, tumor necrosis factor-α and salivary cortisol as new biomarkers of depression in lung cancer patients. Progress Neuro-Psychopharmacol Biol Psychiatr 47:69–76Google Scholar
  42. Duboc D et al (2007) Perindopril preventive treatment on mortality in duchenne muscular dystrophy 10 years’ follow-up. Am Heart J 154(3):596–602PubMedGoogle Scholar
  43. Ebihara S et al (2000) Differential effects of dystrophin and utrophin gene transfer in immunocompetent muscular dystrophy (mdx) mice. Physiol Genomics 8(3):133–144Google Scholar
  44. Engel WK, Hawley RJ (1977) Focal lesions of muscle in peripheral vascular disease. J Neurol 215(3):161–168PubMedGoogle Scholar
  45. Ennen JP, Verma M, Asakura A (2013) Vascular-targeted therapies for duchenne muscular dystrophy. Skelet Muscle 3(9):1–12Google Scholar
  46. Ervasti JM, Campbell KP (1991) Membrane organization of the dystrophin-glycoprotein complex. Cell 66(6):1121–1131PubMedGoogle Scholar
  47. Fall AM et al (2006) Induction of revertant fibres in the mdx mouse using antisense oligonucleotides. Genetic Vaccines Ther 4:3Google Scholar
  48. Fitzpatrick C, Barry C, Garvey C (1986) Psychiatric disorder among boys with duchenne muscular dystrophy. Dev Med Child Neurol 28(5):589–595PubMedGoogle Scholar
  49. Fletcher S et al (2006) Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. J Gene Med 8(2):207–216PubMedGoogle Scholar
  50. Fong P et al (1990) Increased activity of calcium leak channels in myotubes of duchenne human and mdx mouse origin. Science 250(4981):673–676PubMedGoogle Scholar
  51. Forbes SC et al (2014) Magnetic resonance imaging and spectroscopy assessment of lower extremity skeletal muscles in boys with Duchenne muscular dystrophy: a multicenter cross sectional study. PLoS ONE 9(9):e106435PubMedCentralPubMedGoogle Scholar
  52. Fraysse B et al (2004) The alteration of calcium homeostasis in adult dystrophic mdx muscle fibers is worsened by a chronic exercise in vivo. Neurobiol Dis 17(2):144–154PubMedGoogle Scholar
  53. Garrood P et al (2009) MR imaging in duchenne muscular dystrophy quantification of T1-weighted signal, contrast uptake, and the effects of exercise. J Magn Reson Imaging 30(5):1130–1138PubMedGoogle Scholar
  54. Gehrig SM et al (2008) Insulin-like growth factor-I analogue protects muscles of dystrophic mdx mice from contraction-mediated damage. Exp Physiol 93(11):1190–1198PubMedGoogle Scholar
  55. Gerber AR, Bale TL (2012) Antiinflammatory treatment ameliorates HPA stress axis dysfunction in a mouse model of stress sensitivity. Endocrinology 153(10):4830–4837PubMedCentralPubMedGoogle Scholar
  56. Gilbert RÉN et al (1999) Adenovirus-mediated utrophin gene transfer mitigates the dystrophic phenotype of mdx mouse muscles. Hum Gene Ther 10(8):1299–1310PubMedGoogle Scholar
  57. Glaser R, Kiecolt-glaser JK (2005) Stress-induced immune dysfunction : implications for health. Nat Rev Immunol 5:243–251PubMedGoogle Scholar
  58. Goemans NM et al (2011) Systemic Administration of PRO051 in duchenne’s muscular dystrophy. New Engl J Med 364(16):1513–1522Google Scholar
  59. Gosselin LE, Williams JE (2006) Pentoxifylline fails to attenuate fibrosis in dystrophic (mdx) diaphragm muscle. Muscle Nerve 33(6):820–823PubMedGoogle Scholar
  60. Goyenvalle A et al (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Sci (N.Y.) 306(5702):1796–1799Google Scholar
  61. Grange RW (2011) Green tea extract decreases muscle pathology and NF-κB immunostaining in regenerating muscle fibers of mdx mice. Clin Nutr 29(3):391–398Google Scholar
  62. Gregorevic P et al (2006) rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med 12(7):787–789PubMedCentralPubMedGoogle Scholar
  63. Grounds MD et al (2008) Towards developing standard operating procedures for pre- clinical testing in the mdx mouse model of duchenne muscular dystrophy. Neurobiol Dis 31(1):1–19PubMedCentralPubMedGoogle Scholar
  64. Gumerson JD, Michele DE (2011) The dystrophin-glycoprotein complex in the prevention of muscle damage. J Biomed Biotechnol 2011:1–13Google Scholar
  65. Heenskerk et al (2009) In vivo comparison of 2 -O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping. J Gene Med 11:257–266Google Scholar
  66. Hoen PA t et al (2006) Gene expression profiling to monitor therapeutic and adverse effects of antisense therapies for duchenne muscular dystrophy. Pharmacogenomics 7(3):281–297PubMedGoogle Scholar
  67. Hoffman EP et al (1990) Somatic reversion/suppression of the mouse mdx phenotype in vivo. J Neurol Sci 99(1):9–25PubMedGoogle Scholar
  68. Huang P et al (2009) Imatinib attenuates skeletal muscle dystrophy in mdx mice. FASEB J 23(8):2539–2548PubMedCentralPubMedGoogle Scholar
  69. Ito K et al (2006) Smooth muscle-specific dystrophin expression improves aberrant vasoregulation in mdx mice. Hum Mol Genet 15(14):5–7Google Scholar
  70. Jin RC, Loscalzo J (2010) Vascular nitric oxide: formation and function. J Blood Med 2010(1):147–162PubMedGoogle Scholar
  71. Kaprielian RR et al (2000) Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium. Circulation 100:2586–2594Google Scholar
  72. Keep NH (2000) Structural comparison of actin binding in utrophin and dystrophin. Neurological Sci 21(5 Suppl):S929–S937Google Scholar
  73. Khairallah M et al (2007) Metabolic and signaling alterations in dystrophin-deficient hearts precede overt cardiomyopathy. J Mol Cell Cardiol 43(2):119–129PubMedGoogle Scholar
  74. Kim J-H et al (2013) Contribution of oxidative stress to pathology in diaphragm and limb muscles with duchenne muscular dystrophy. J Muscle Res Cell Motil 34(1):1–13PubMedGoogle Scholar
  75. Kostek M et al (2012) IL-6 signaling blockade increases inflammation but does not improve muscle function in the mdx mouse. BMC Musculoskelet Disord 13(1):106PubMedCentralPubMedGoogle Scholar
  76. Krag TOB et al (2004) Heregulin ameliorates the dystrophic phenotype in mdx mice. Proc Natl Acad Sci USA 101(38):13856–13860PubMedCentralPubMedGoogle Scholar
  77. Kumar A, Boriek AM (2003) Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in duchenne muscular dystrophy. FASEB J 17(3):386–396PubMedGoogle Scholar
  78. Lapidos KA, Kakkar R, McNally EM (2004) The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 94(8):1023–1031PubMedGoogle Scholar
  79. Larcher T et al (2014) Characterization of dystrophin deficient rats: a new model for duchenne muscular dystrophy. PLoS ONE 9(10):e110371PubMedCentralPubMedGoogle Scholar
  80. Leon S et al (1986) Chronic intestinal pseudoobstruction as a complication of Duchenne’s muscular dystrophy. Gastroenterology 90(2):455–459PubMedGoogle Scholar
  81. Leonard BE, Myint A (2006) Changes in the immune system in depression and dementia: causal or co-incidental effects? Diol Clin Neurosci 8(2):163–174Google Scholar
  82. Lim J-H, Kim D-Y, Bang MS (2004) Effects of exercise and steroid on skeletal muscle apoptosis in the mdx mouse. Muscle Nerve 30(4):456–462PubMedGoogle Scholar
  83. Love D et al (1989) An autosomal transcript in skeletal muscle with homology to dystrophin. Nature 339(6219):55–58PubMedGoogle Scholar
  84. Lu QL et al (2003) Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 9(8):1009–1014PubMedGoogle Scholar
  85. Lu QL et al (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci USA 102(1):198–203PubMedCentralPubMedGoogle Scholar
  86. Lu QL et al (2011) The status of exon skipping as a therapeutic approach to duchenne muscular dystrophy. Mol Ther 19(1):9–15PubMedCentralPubMedGoogle Scholar
  87. Maes M (2008) The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett 29(3):287–291PubMedGoogle Scholar
  88. Malerba A et al (2009) Dosing regimen has a significant impact on the efficiency of morpholino oligomer-induced exon skipping in mdx mice. Hum Gene Ther 20(9):955–965PubMedGoogle Scholar
  89. Malpass K (2012) Neuromuscular disease a novel imaging method to quantify low levels of dystrophin in duchenne muscular dystrophy. Nat Rev Neurol 8(120):120Google Scholar
  90. Manning J et al (2014) Amitriptyline is efficacious in ameliorating muscle inflammation and depressive symptoms in the mdx mouse model of duchenne muscular dystrophy. Exp Physiol 99(10):1370–1386PubMedGoogle Scholar
  91. Manzur A et al (2008) Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev. (1):CD003725. doi: 10.1002/14651858.CD003725.pub3.
  92. Marques MJ et al (2009) Long-term therapy with deflazacort decreases myocardial fibrosis in mdx mice. Muscle Nerve 40(3):466–468PubMedGoogle Scholar
  93. Matsumura K et al (1992) Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 360(6494):588–591PubMedGoogle Scholar
  94. Matsumura CY et al (2011) Stretch-activated calcium channel protein TRPC1 is correlated with the different degrees of the dystrophic phenotype in mdx mice. Am J Physiol Cell Physiol 301(6):C1344–C1350PubMedGoogle Scholar
  95. Mendell JR et al (2013) Eteplirsen for the treatment of duchenne muscular dystrophy. Ann Neurol 74(5):637–647PubMedGoogle Scholar
  96. Messina S et al (2009) Flavocoxid counteracts muscle necrosis and improves functional properties in mdx mice: a comparison study with methylprednisolone. Exp Neurol 220(2):349–358PubMedGoogle Scholar
  97. Messina S et al (2011) Activation of NF-kappaB pathway in Duchenne muscular dystrophy: relation to age. Acta Myol 30(1):16–23PubMedCentralPubMedGoogle Scholar
  98. Michele DE, Campbell KP (2003) Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J Biol Chem 278(18):15457–15460PubMedGoogle Scholar
  99. Mizunoya W et al (2011) Nitric oxide donors improve prednisone effects on muscular dystrophy in the mdx mouse diaphragm. Am J Physiol Cell Physiol 300(5):C1065–C1077PubMedGoogle Scholar
  100. Moens P, Baatsen PH, Maréchal G (1993) Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch. J Muscle Res Cell Motil 14(4):446–451PubMedGoogle Scholar
  101. Mok E et al (2009) Lack of functional benefit with glutamine versus placebo in duchenne muscular dystrophy: a randomized crossover trial. PLoS ONE 4(5):e5448PubMedCentralPubMedGoogle Scholar
  102. Mosqueira M et al (2013) Cardiac and respiratory dysfunction in duchenne muscular dystrophy and the role of second messengers. Med Res Revies 33(5):1174–1213Google Scholar
  103. Mulè F, Amato A, Serio R (2010) Gastric emptying, small intestinal transit and fecal output in dystrophic (mdx) mice. J Physiol Sci 60(1):75–79PubMedGoogle Scholar
  104. Nakae Y et al (2008) Subcutaneous injection, from birth, of epigallocatechin-3-gallate, a component of green tea, limits the onset of muscular dystrophy in mdx mice: a quantitative histological, immunohistochemical and electrophysiological study. Histochem Cell Biol 129(4):489–501PubMedGoogle Scholar
  105. Nakae Y et al (2012) Quantitative evaluation of the beneficial effects in the mdx mouse of epigallocatechin gallate, an antioxidant polyphenol from green tea. Histochem Cell Biol 137(6):811–827PubMedCentralPubMedGoogle Scholar
  106. Nakamura A, Takeda S (2011) Mammalian models of duchenne muscular Dystrophy: pathological characteristics and therapeutic applications. J Biomed Biotechnol 2011:184393PubMedCentralPubMedGoogle Scholar
  107. Nicholson LV et al (1993) Functional significance of dystrophin positive fibres in duchenne muscular dystrophy. Arch Dis Child 68(5):632–636PubMedCentralPubMedGoogle Scholar
  108. Nigro G et al (1990) The incidence and evolution of cardiomyopathy in duchenne muscular dystrophy. Int J Cardiol 26(3):271–277PubMedGoogle Scholar
  109. Olivier MD et al (2006) Green tea extract and its major polyphenol (-)-epigallocatechin gallate improve muscle function in a mouse model for Duchenne muscular dystrophy. Am J Physiol Cell Physiol 290(2):C616–C625Google Scholar
  110. Pan Y et al (2008) Curcumin alleviates dystrophic muscle pathology in mdx mice. Mol Cells 25(4):531–537PubMedGoogle Scholar
  111. Pastoret C, Sebille A (1995) Mdx mice show progressive weakness and muscle deterioration with age. J Neurol Sci 129(2):97–105PubMedGoogle Scholar
  112. Payne ET et al (2006) Nutritional therapy improves function and complements corticosteroid intervention in mdx mice. Muscle Nerve 33(1):66–77PubMedGoogle Scholar
  113. Petrof B et al (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 90(8):3710–3714PubMedCentralPubMedGoogle Scholar
  114. Pierno S et al (2007) Role of tumour necrosis factor alpha, but not of cyclo-oxygenase-2-derived eicosanoids, on functional and morphological indices of dystrophic progression in mdx mice: a pharmacological approach. Neuropathol Appl Neurobiol 33(3):344–359PubMedGoogle Scholar
  115. Porter JD et al (2002) A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 11(3):263–272PubMedGoogle Scholar
  116. Radley HG, Davies MJ, Grounds MD (2008) Reduced muscle necrosis and long-term benefits in dystrophic mdx mice after cV1q (blockade of TNF) treatment. Neuromuscul Disord 18(3):227–238PubMedGoogle Scholar
  117. Rando TA (2001) The dystrophin–glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve 24(112):1575–1594PubMedGoogle Scholar
  118. Reutenauer J et al (2008) Investigation of Debio 025, a cyclophilin inhibitor, in the dystrophic mdx mouse, a model for duchenne muscular dystrophy. Br J Pharmacol 155(4):574–584PubMedCentralPubMedGoogle Scholar
  119. Romfh A, McNally EM (2010) Cardiac assessment in duchenne and becker muscular dystrophies. Curr Heart Fail Rep 7(4):212–218PubMedGoogle Scholar
  120. Rybakova IN et al (2006) Dystrophin and utrophin bind actin through distinct modes of contact. J Biol Chem 281(15):9996–10001PubMedGoogle Scholar
  121. Sabharwal R (2014) The link between stress disorders and autonomic dysfunction in muscular dystrophy. Front Physiol 5:25PubMedCentralPubMedGoogle Scholar
  122. Sali A et al (2012) Glucocorticoid-treated mice are an inappropriate positive control for long-term preclinical studies in the mdx mouse. PLoS ONE 7(4):e34204PubMedCentralPubMedGoogle Scholar
  123. Schara U, Mortier W (2001) Long-term steroid therapy in Duchenne muscular dystrophy-positive results versus side effects. J Clin Neuromuscu 2:179–183Google Scholar
  124. Schreiber A et al (1987) Magnetic resonance imaging of children with Duchenne muscular dystrophy. Pediatr Radiol 17:495–497PubMedGoogle Scholar
  125. Sekiguchi M et al (2009) A deficit of brain dystrophin impairs specific amygdala GABAergic transmission and enhances defensive behaviour in mice. Brain 132(Pt 1):124–135PubMedGoogle Scholar
  126. Siegel AL et al (2009) Treatment with inhibitors of the NF-kappaB pathway improves whole body tension development in the mdx mouse. Neuromuscul Disord 19(2):131–139PubMedGoogle Scholar
  127. Simonds AK et al (1998) Impact of nasal ventilation on survival in hypercapnic duchenne muscular dystrophy. Thorax 53(11):949–952PubMedCentralPubMedGoogle Scholar
  128. Smythe GM, White JD (2011) Voluntary wheel running in dystrophin-deficient (mdx) mice: relationships between exercise parameters and exacerbation of the dystrophic phenotype. PLoS Curr, 3, p. RRN1295Google Scholar
  129. Spencer MJ, Croal IDE, Tidball JG (1995) Calpains are activated in necrotic fibers from mdx dystrophic mice. J Biol Chem 270(18):10909–10914PubMedGoogle Scholar
  130. Spurney CF et al (2009) Dystrophin deficient cardiomyopathy in mouse: expression of Nox4 and Lox are associated with fibrosis and altered functional parameters in the heart. Neuromuscul Disord 18(5):371–381Google Scholar
  131. Spurney CF et al (2012) CINRG pilot trial of coenzyme Q10 in steroid treated duchenne muscuar dystophy. Muscle Nerve 44(2):174–178Google Scholar
  132. Stedman HH et al (1991) The mdx mouse diaphragm reproduces the degenerative changes of duchenne muscular dystrophy. Nature 352(6335):536–539PubMedGoogle Scholar
  133. Stevens ED, Faulkner JA (2000) The capacity of mdx mouse diaphragm muscle to do oscillatory work. J Physiol 522(3):457–466PubMedCentralPubMedGoogle Scholar
  134. Stuckey DJ et al (2012) In vivo MRI characterization of progressive cardiac dysfunction in the mdx mouse model of muscular dystrophy. PLoS ONE 7(1):e28569PubMedCentralPubMedGoogle Scholar
  135. Tameyasu T, Ogura S, Ogihara K (2004) The effect of e-, i-, and n-nitric oxide synthase inhibition on colonic motility in normal and muscular dystrophy (Mdx) mice. Jpn J Physiol 54(6):555–566PubMedGoogle Scholar
  136. Thanh LT et al (1995) Characterization of revertant muscle fibers in Duchenne muscular dystrophy, using exon-specific monoclonal antibodies against dystrophin. Am J Hum Genet 56(3):725–731PubMedCentralPubMedGoogle Scholar
  137. Tinsley J et al (1998) Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 4(12):1441–1444PubMedGoogle Scholar
  138. Tinsley J et al (2014) Future clinical and biomarker development for SMT C1100, the first utrophin modulator to enter clinical trials for duchenne muscular dystrophy (DMD). Neurology (8)82:10Google Scholar
  139. Torelli S et al (1999) Expression, regulation and localisation of dystrophin isoforms in human foetal skeletal and cardiac muscle. Neuromuscul Disord 9(8):541–551PubMedGoogle Scholar
  140. Turgeman T et al (2008) Prevention of muscle fibrosis and improvement in muscle performance in the mdx mouse by halofuginone. Neuromuscul Disord 18(11):857–868PubMedGoogle Scholar
  141. Turner P et al (1993) Proteolysis results in altered leak channel kinetics and elevated free calcium in mdx muscle. J Membr Biol 133(3):243–251PubMedGoogle Scholar
  142. Vaillend C, Ungerer A (1999) Behavioral characterization of mdx3cv mice deficient in C-terminal dystrophins. Neuromuscul Disord 9(5):296–304PubMedGoogle Scholar
  143. Valentine B et al (1992) Canine X-linked muscular dystrophy as an animal model of Duchenne muscular dystrophy: a review. Am J Med Genet 42(3):352–356PubMedGoogle Scholar
  144. Vallières L, Rivest S (1999) Interleukin-6 is a needed proinflammatory cytokine in the prolonged neural activity and transcriptional activation of corticotropin-releasing factor during endotoxemia. Endocrinology 140(9):3890–3903PubMedGoogle Scholar
  145. Van Deutekom JC et al (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. New Engl J Med 357(26):2677–2686PubMedGoogle Scholar
  146. Van Erp C, Irwin NG, Hoey AJ (2006) Long-term administration of pirfenidone improves cardiac function in mdx mice. Muscle Nerve 34(3):327–334PubMedGoogle Scholar
  147. Vandebrouck C et al (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158(6):1089–1096PubMedCentralPubMedGoogle Scholar
  148. Venihaki M et al (2001) Corticotropin-releasing hormone regulates IL-6 expression during inflammation. J Clin Investig 108(8):1159–1166PubMedCentralPubMedGoogle Scholar
  149. Verhaart IEC, Aartsma-Rus A (2012) Gene therapy for duchenne muscular dystrophy. Curr Opin Neurol 25(5):588–596PubMedGoogle Scholar
  150. Vilquin JT et al (1998) Evidence of mdx mouse skeletal muscle fragility in vivo by eccentric running exercise. Muscle Nerve 21(5):567–576PubMedGoogle Scholar
  151. Viollet L et al (2012) Effects of angiotensin-converting enzyme inhibitors and/or beta blockers on the cardiomyopathy in duchenne muscular dystrophy. Am J Cardiol 110(1):98–102PubMedGoogle Scholar
  152. Wagner KR (2008) Approaching a new age in Duchenne muscular dystrophy treatment. Neurotherapeutics 5(4):583–591PubMedGoogle Scholar
  153. Wehling-Henricks M, Lee JJ, Tidball JG (2004) Prednisolone decreases cellular adhesion molecules required for inflammatory cell infiltration in dystrophin-deficient skeletal muscle. Neuromuscul Disord 14(8–9):483–490PubMedGoogle Scholar
  154. Wissing ER et al (2011) Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice. Neuromuscul Disord 20(11):753–760Google Scholar
  155. Wu B et al (2010) Dose-dependent restoration of dystrophin expression in cardiac muscle of dystrophic mice by systemically delivered morpholino. Gene Ther 17(1):132-140Google Scholar
  156. Yiu E, Kornberg A (2008) Duchenne muscular dystrophy. Neurol India 56(3):236–247PubMedGoogle Scholar
  157. Yokota T et al (2006) Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration. J Cell Sci 119(Pt 13):2679–2687PubMedGoogle Scholar
  158. Yokota T et al (2009) Efficacy of systemic morpholino exon–skipping in duchenne dystrophy dogs 65(6):667–676Google Scholar
  159. Yokota T et al (2012) Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients?. Expert Opin Biol Ther 12(9):1141–1152.Google Scholar
  160. Yoshida M et al (2006) Dietary NaCl supplementation prevents muscle necrosis in a mouse model of duchenne muscular dystrophy. Am J Physiol Regul Intregr Comp Physiol 1(290):449–455Google Scholar
  161. Zeiger U, Mitchell CH, Khurana TS (2010) Superior calcium homeostasis of extraocular muscles. Exp Eye Res 91(5):613–622PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity College CorkCorkIreland
  2. 2.Alimentary Pharmabiotic CentreUniversity College CorkCorkIreland

Personalised recommendations