Identification of possible cigarette smoke constituents responsible for muscle catabolism

  • Oren Rom
  • Sharon Kaisari
  • Dror Aizenbud
  • Abraham Z. ReznickEmail author
EMC2012 Special Issue - Review


The age-related loss of muscle mass and strength also known as sarcopenia is significantly influenced by life style factors such as physical inactivity and impaired nutrition. Cigarette smoking is another life style habit that has been shown to be associated with sarcopenia and to affect skeletal muscle. Even today, smoking is still prevalent worldwide and is probably the most significant source of toxic chemicals exposure to humans. Cigarette smoke (CS) is a complex aerosol consisting of thousands of various constituents including reactive oxygen and nitrogen free radicals, toxic aldehydes and more. Previous epidemiological studies have identified tobacco smoking as a risk factor for sarcopenia. Clinical, in vivo and in vitro studies have revealed CS-induced skeletal muscle damage due to impaired muscle metabolism, increased inflammation and oxidative stress, over-expression of atrophy related genes and activation of various intracellular signaling pathways. This review aims to discuss and identify the components of CS that may promote catabolism of skeletal muscle.


Cigarette smoke Muscle catabolism Sarcopenia ROS RNS Aldehydes 



This work was supported by grants from the Rappaport Institute, the Krol Foundation of Barnegat, NJ, the Myers-JDC-Brookdale Institute of gerontology and human development, and ESHEL—sthe association for planning and development of services for the aged in Israel.


  1. Ardite E, Peinado VI, Rabinovich RA, Fernandez-Checa JC, Roca J, Barbera JA (2006) Systemic effects of cigarette smoke exposure in the guinea pig. Respir Med 100(7):1186–1194. doi: 10.1016/j.rmed.2005.10.023 PubMedCrossRefGoogle Scholar
  2. Arnson Y, Shoenfeld Y, Amital H (2010) Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun 34(3):J258–J265. doi: 10.1016/j.jaut.2009.12.003 PubMedCrossRefGoogle Scholar
  3. Barbieri SS, Zacchi E, Amadio P, Gianellini S, Mussoni L, Weksler BB, Tremoli E (2011) Cytokines present in smokers’ serum interact with smoke components to enhance endothelial dysfunction. Cardiovasc Res 90(3):475–483. doi: 10.1093/cvr/cvr032 PubMedCrossRefGoogle Scholar
  4. Barreiro E, Peinado VI, Galdiz JB, Ferrer E, Marin-Corral J, Sanchez F, Gea J, Barbera JA (2010) Cigarette smoke-induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am J Respir Crit Care Med 4:477–488. doi: 10.1164/rccm.200908-1220OC CrossRefGoogle Scholar
  5. Barreiro E, Del Puerto-Nevado L, Puig-Vilanova E, Perez-Rial S, Sanchez F, Martinez-Galan L, Rivera S, Gea J, Gonzalez-Mangado N, Peces-Barba G (2012) Cigarette smoke-induced oxidative stress in skeletal muscles of mice. Respir Physiol Neurobiol. doi: 10.1016/jresp201202001 PubMedGoogle Scholar
  6. Bar-Shai M, Reznick AZ (2006) Reactive nitrogen species induce nuclear factor-kappaB-mediated protein degradation in skeletal muscle cells. Free Radic Biol Med. 40(12):2112–2125. doi: 10.1016/j.freeradbiomed.2006.02.009 PubMedCrossRefGoogle Scholar
  7. Bar-Shai M, Hasnis E, Wiener-Megnazi Z, Reznick AZ (2006) The role of reactive nitrogen species and cigarette smoke in activation of transcription factor NF-kappaB and implication to inflammatory processes. J Physiol Pharmacol 57(4):39–44PubMedGoogle Scholar
  8. Basu S, Stuckler D, Bitton A, Glantz SA (2011) Projected effects of tobacco smoking on worldwide tuberculosis control: mathematical modelling analysis. BMJ 343:d5506. doi: 10.1136/bmj.d5506 PubMedCrossRefGoogle Scholar
  9. Bein K, Leikauf GD (2011) Acrolein—a pulmonary hazard. Mol Nutr Food Res 55(9):1342–1360. doi: 10.1002/mnfr.201100279 PubMedCrossRefGoogle Scholar
  10. Berry KA, Henson PM, Murphy RC (2008) Effects of acrolein on leukotriene biosynthesis in human neutrophils. Chem Res Toxicol 21(12):2424–2432PubMedCrossRefGoogle Scholar
  11. Buford TW, Anton SD, Judge AR, Marzetti E, Wohlgemuth SE, Carter CS, Leeuwenburgh C, Pahor M, Manini TM (2010a) Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res Rev. 9(4):369–383. doi: 10.1016/j.arr.2010.04.004 PubMedCrossRefGoogle Scholar
  12. Buford TW, Cooke MB, Manini TM, Leeuwenburgh C, Willoughby DS (2010b) Effects of age and sedentary lifestyle on skeletal muscle NF-kappaB signaling in men. J Gerontol A Biol Sci Med Sci 65(5):532–537. doi: 10.1093/gerona/glp196 PubMedCrossRefGoogle Scholar
  13. Burton LA, Sumukadas D (2010) Optimal management of sarcopenia. Clin Interv Aging 5:217–228PubMedGoogle Scholar
  14. Carnac G, Ricaud S, Vernus B, Bonnieu A (2006) Myostatin: biology and clinical relevance. Mini Rev Med Chem. 6(7):765–770PubMedCrossRefGoogle Scholar
  15. Castillo EM, Goodman-Gruen D, Kritz-Silverstein D, Morton DJ, Wingard DL, Barrett-Connor E (2003) Sarcopenia in elderly men and women: the Rancho Bernardo study. Am J Prev Med 25(3):226–231PubMedCrossRefGoogle Scholar
  16. Chatkin R, Chatkin JM (2007) Smoking and changes in body weight: can physiopathology and genetics explain this association? J Bras Pneumol. 33(6):712–719PubMedCrossRefGoogle Scholar
  17. Chiolero A, Faeh D, Paccaud F, Cornuz J (2008) Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am J Clin Nutr 87(4):801–809PubMedGoogle Scholar
  18. Colombo G, Aldini G, Orioli M, Giustarini D, Gornati R, Rossi R, Colombo R, Carini M, Milzani A, Dalle-Donne I (2010) Water-Soluble alpha,beta-unsaturated aldehydes of cigarette smoke induce carbonylation of human serum albumin. Antioxid Redox Signal 12(3):349–364. doi: 10.1089=ars.2009.2806 PubMedCrossRefGoogle Scholar
  19. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39(4):412–423. doi: 10.1093/ageing/afq034 PubMedCrossRefGoogle Scholar
  20. Csiszar A, Podlutsky A, Wolin MS, Losonczy G, Pacher P, Ungvari Z (2009) Oxidative stress and accelerated vascular aging: implications for cigarette smoking. Front Biosci. 14:3128–3144PubMedCrossRefGoogle Scholar
  21. Eiserich JP, van der Vliet A, Handelman GJ, Halliwell B, Cross CE (1995) Dietary antioxidants and cigarette smoke-induced biomolecular damage: a complex interaction. Am J Clin Nutr 62(6):1490S–1500SPubMedGoogle Scholar
  22. Filozof C, Fernandez Pinilla MC, Fernandez-Cruz A (2004) Smoking cessation and weight gain. Obes Rev 5s(2):95−103. doi: 10.1111/j.1467-789X.2004.00131.x
  23. Foletta VC, White LJ, Larsen AE, Leger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461(3):325–335. doi: 10.1007/s00424-010-0919-9 PubMedCrossRefGoogle Scholar
  24. Fugere NA, Ferrington DA, Thompson LV (2006) Protein nitration with aging in the rat semimembranosus and soleus muscles. J Gerontol A Biol Sci Med Sci 61(8):806–812PubMedCrossRefGoogle Scholar
  25. Gochman E, Reznick AZ, Avizohar O, Ben-Amotz A, Levy Y (2007) Exhaustive exercise modifies oxidative stress in smoking subjects. Am J Med Sci 333(6):346–353. doi: 10.1097/MAJ.0b013e318065b57c PubMedCrossRefGoogle Scholar
  26. Gugliucci A (2008) Antithrombin activity is inhibited by acrolein and homocysteine thiolactone: Protection by cysteine. Life Sci 82(7–8):413–418. doi: 10.1016/j.lfs.2007.11.023 PubMedCrossRefGoogle Scholar
  27. Hasnis E, Bar-Shai M, Burbea Z, Reznick AZ (2007) Mechanisms underlying cigarette smoke-induced NF-kappaB activation in human lymphocytes: the role of reactive nitrogen species. J Physiol Pharmacol 58(5):275–287PubMedGoogle Scholar
  28. Hong-Brown LQ, Frost RA, Lang CH (2001) Alcohol impairs protein synthesis and degradation in cultured skeletal muscle cells. Alcohol Clin Exp Res 25(9):1373–1382PubMedCrossRefGoogle Scholar
  29. Ismahil MA, Hamid T, Haberzettl P, Gu Y, Chandrasekar B, Srivastava S, Bhatnagar A, Prabhu SD (2011) Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 301(5):H2050–H2060. doi: 10.1152/ajpheart.00120.2011 PubMedCrossRefGoogle Scholar
  30. Joulia-Ekaza D, Cabello G (2007) The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7(3):310–315. doi: 10.1016/j.coph.2006.11.011 PubMedCrossRefGoogle Scholar
  31. Kent-Braun JA (2009) Skeletal muscle fatigue in old age: whose advantage? Exerc Sport Sci Rev 37(1):3–9. doi: 10.1097/JES.0b013e318190ea2e PubMedCrossRefGoogle Scholar
  32. Kleppinger A, Litt MD, Kenny AM, Oncken CA (2010) Effects of smoking cessation on body composition in postmenopausal women. J Womens Health (Larchmt) 19(9):1651–1657. doi: 10.1089/jwh.2009.1853 CrossRefGoogle Scholar
  33. Klesges RC, Eck LH, Isbell TR, Fuiiton W, Hanson CL (1990) Smoking status: effects on the dietary intake, physical activity, and body fat of adult men. Am J Clin Nutr 51(5):784–789PubMedGoogle Scholar
  34. Korsten MA, Matsuzaki S, Feinman L, Lieber CS (1975) High blood acetaldehyde levels after ethanol administration. Difference between alcoholic and nonalcoholic subjects. N Engl J Med 292(8):386–389PubMedCrossRefGoogle Scholar
  35. Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB (2010) Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int 4:543–559. doi: 10.1007/s00198-009-1059-y CrossRefGoogle Scholar
  36. Lee JS, Auyeung TW, Kwok T, Lau EM, Leung PC, Woo J (2007) Associated factors and health impact of sarcopenia in older chinese men and women: a cross-sectional study. Gerontology 53(6):404–410. doi: 10.1159/000107355 PubMedCrossRefGoogle Scholar
  37. Li YP, Chen Y, Li AS, Reid MB (2003) Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol 285(4):C806–C812. doi: 10.1152/ajpcell.00129.2003 PubMedGoogle Scholar
  38. Lindner D, Smith S, Leroy CM, Tricker AR (2011) Comparison of exposure to selected cigarette smoke constituents in adult smokers and nonsmokers in a European, multicenter, observational study. Cancer Epidemiol Biomarkers Prev. 20(7):1524–1536. doi: 10.1158/1055-9965.EPI-10-1186 PubMedCrossRefGoogle Scholar
  39. Liu Q, Xu WG, Luo Y, Han FF, Yao XH, Yang TY, Zhang Y, Pi WF, Guo XJ (2011) Cigarette smoke-induced skeletal muscle atrophy is associated with up-regulation of USP-19 via p38 and ERK MAPKs. J Cell Biochem 112(9):2307–2316. doi: 10.1002/jcb.23151 PubMedCrossRefGoogle Scholar
  40. Luo J, Hill BG, Gu Y, Cai J, Srivastava S, Bhatnagar A, Prabhu SD (2007) Mechanisms of acrolein-induced myocardial dysfunction: implications for environmental and endogenous aldehyde exposure. Am J Physiol Heart Circ Physiol. 293(6):H3673–H3684. doi: 10.1152/ajpheart.00284.2007 PubMedCrossRefGoogle Scholar
  41. McCarthy JJ, Esser KA (2010) Anabolic and catabolic pathways regulating skeletal muscle mass. Curr Opin Clin Nutr Metab Care. 13(3):230–235. doi: 10.1097/MCO.0b013e32833781b5 PubMedCrossRefGoogle Scholar
  42. McClung JM, Judge AR, Talbert EE, Powers SK (2009) Calpain-1 is required for hydrogen peroxide-induced myotube atrophy. Am J Physiol Cell Physiol 296(2):C363–C371. doi: 10.1152/ajpcell.00497.2008 PubMedCrossRefGoogle Scholar
  43. Meng SJ, Yu LJ (2010) Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci 11(4):1509–1526. doi: 10.3390/ijms11041509 PubMedCrossRefGoogle Scholar
  44. Misonou Y, Asahi M, Yokoe S, Miyoshi E, Taniguchi N (2006) Acrolein produces nitric oxide through the elevation of intracellular calcium levels to induce apoptosis in human umbilical vein endothelial cells: implications for smoke angiopathy. Nitric Oxide 14(2):180–187. doi: 10.1016/j.niox.2005.09.004 PubMedCrossRefGoogle Scholar
  45. Montes de Oca M, Loeb E, Torres SH, De Sanctis J, Hernández N, Tálamo C (2008) Peripheral muscle alterations in non-COPD smokers. Chest 133(1):13–18. doi: 10.1378/chest.07-1592 PubMedCrossRefGoogle Scholar
  46. Morse CI, Pritchard LJ, Wüst RC, Jones DA, Degens H (2008) Carbon monoxide inhalation reduces skeletal muscle fatigue resistance. Acta Physiol 192(3):397–401. doi: 10.1111/j.1748-1716.2007.01757.x CrossRefGoogle Scholar
  47. Oba T, Maeno Y, Ishida K (2005) Differential contribution of clinical amounts of acetaldehyde to skeletal and cardiac muscle dysfunction in alcoholic myopathy. Curr Pharm Des. 11 (6):791–780Google Scholar
  48. Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, Tylavsky FA, Newman AB (2006) Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes 55(6):1813–1818. doi: 10.2337/db05-1183 PubMedCrossRefGoogle Scholar
  49. Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R, Kammerer C, de Rekeneire N, Harris TB, Schwartz AV, Tylavsky FA, Cho YW, Newman AB (2007) Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care 30(6):1507–1512. doi: 10.2337/dc06-2537 PubMedCrossRefGoogle Scholar
  50. Petersen AM, Magkos F, Atherton P, Selby A, Smith K, Rennie MJ, Pedersen BK, Mittendorfer B (2007) Smoking impairs muscle protein synthesis and increases the expression of myostatin and MAFbx in muscle. Am J Physiol Endocrinol Metab. 293(3):E843–E848. doi: 10.1152/ajpendo.00301.2007 PubMedCrossRefGoogle Scholar
  51. Petrescu F, Voican SC, Silosi I (2010) Tumor necrosis factor-alpha serum levels in healthy smokers and nonsmokers. Int J Chron Obstruct Pulmon Dis. 5:217–222PubMedGoogle Scholar
  52. Pezzoli C, Galli-kienle M, Padova C, Stramentinoli G (1984) HPLC method for the evaluation of blood acetaldehyde without ethanol interference. J Liq Chromatogr 7(4):765–778. doi: 10.1080/01483918408074001 CrossRefGoogle Scholar
  53. Powers SK, Kavazis AN, DeRuisseau KC (2005) Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 288(2):R337–R344. doi: 10.1152/ajpregu.00469.2004 PubMedCrossRefGoogle Scholar
  54. Preedy V, Keating J, Peters T (1992) The acute effects of ethanol and acetaldehyde on rates of protein synthesis in type I and type II fiber-rich skeletal muscles of the rat. Alcohol Alcohol 27:241–251PubMedGoogle Scholar
  55. Preedy VR, Adachi J, Ueno Y, Ahmed S, Mantle D, Mullatti N, Rajendram R, Peters TJ (2001) Alcoholic skeletal muscle myopathy: definitions, features, contribution of neuropathy, impact and diagnosis. Eur J Neurol 8(6):677–687PubMedCrossRefGoogle Scholar
  56. Price SR, Gooch JL, Donaldson SK, Roberts-Wilson TK (2010) Muscle atrophy in chronic kidney disease results from abnormalities in insulin signaling. J Ren Nutr. 20(5 Suppl):S24–S28. doi: 10.1053/j.jrn.2010.05.007 PubMedCrossRefGoogle Scholar
  57. Rinaldi M, Maes K, De Vleeschauwer S, Thomas D, Verbeken EK, Decramer M, Janssens W, Gayan-Ramirez GN (2012) Long-term nose-only cigarette smoke exposure induces emphysema and mild skeletal muscle dysfunction in mice. Dis. Models Mech. doi: 10.1242/dmm.008508 Google Scholar
  58. Rom O, Kaisari S, Aizenbud D, Reznick A (2012) Sarcopenia and smoking: a possible cellular model of cigarette smoke effects on muscle protein breakdown. Ann N Y Acad Sci (in press)Google Scholar
  59. Sayer AA, Syddall H, Martin H, Patel H, Baylis D, Cooper C (2008) The developmental origins of sarcopenia. J Nutr Health Aging. 12(7):427–432PubMedCrossRefGoogle Scholar
  60. Smith CJ, Fischer TH (2001) Particulate and vapor phase constituents of cigarette mainstream smoke and risk of myocardial infarction. Atherosclerosis 158(2):257–267PubMedCrossRefGoogle Scholar
  61. Stenholm S, Tiainen K, Rantanen T, Sainio P, Heliovaara M, Impivaara O, Koskinen S (2012) Long-term determinants of muscle strength decline: prospective evidence from the 22-year mini-Finland follow-up survey. J Am Geriatr Soc 60(1):77–85. doi: 10.1111/j.1532-5415.2011.03779.x PubMedCrossRefGoogle Scholar
  62. Sukhanov S, Semprun-Prieto L, Yoshida T, Michael Tabony A, Higashi Y, Galvez S, Delafontaine P (2011) Angiotensin II, oxidative stress and skeletal muscle wasting. Am J Med Sci. 342 (2):143−147. doi: 10.1097/MAJ.0b013e318222e620
  63. Swan GE, Lessov-Schlaggar CN (2007) The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol Rev 17(3):259–273. doi: 10.1007/s11065-007-9035-9 PubMedCrossRefGoogle Scholar
  64. Szulc P, Duboeuf F, Marchand F, Delmas PD (2004) Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: the MINOS study. Am J Clin Nutr 80(2):496–503PubMedGoogle Scholar
  65. Talhout R, Opperhuizen A, van Amsterdam JG (2006) Sugars as tobacco ingredient: Effects on mainstream smoke composition. Food Chem Toxicol 44(11):1789–1798. doi: 10.1016/j.fct.2006.06.016 PubMedCrossRefGoogle Scholar
  66. Talhout R, Opperhuizen A, van Amsterdam JG (2007) Role of acetaldehyde in tobacco smoke addiction. Eur Neuropsychopharmacol 17(10):627–636. doi: 10.1016/j.euroneuro.2007.02.013 PubMedCrossRefGoogle Scholar
  67. Tang K, Wagner PD, Breen EC (2010) TNF-alpha-mediated reduction in PGC-1alpha may impair skeletal muscle function after cigarette smoke exposure. J Cell Physiol 222(2):320–327. doi: 10.1002/jcp21955 PubMedCrossRefGoogle Scholar
  68. Tostes RC, Carneiro FS, Lee AJ, Giachini FR, Leite R, Osawa Y, Webb RC (2008) Cigarette smoking and erectile dysfunction: focus on NO bioavailability and ROS generation. J Sex Med. 5(6):1284–1295. doi: 10.1111/j.1743-6109.2008.00804.x PubMedCrossRefGoogle Scholar
  69. Toth MJ, Matthews DE, Tracy RP, Previs MJ (2005) Age-related differences in skeletal muscle protein synthesis: relation to markers of immune activation. Am J Physiol Endocrinol Metab. 288(5):E883–E891. doi: 10.1152/ajpendo.00353.2004 PubMedCrossRefGoogle Scholar
  70. Tsutsui H, Kinugawa S, Matsushima S, Yokota T (2011) Oxidative stress in cardiac and skeletal muscle dysfunction associated with diabetes mellitus. J Clin Biochem Nutr. 48(1):68–71. doi: 10.3164/jcbn.11-012FR PubMedCrossRefGoogle Scholar
  71. Visvanathan R, Chapman IM (2009) Undernutrition and anorexia in the older person. Gastroenterol Clin North Am 38(3):393–409. doi: 10.1016/j.gtc.2009.06.009 PubMedCrossRefGoogle Scholar
  72. Visvanathan R, Chapman I (2010) Preventing sarcopaenia in older people. Maturitas 66(4):383–388. doi: 10.1016/j.maturitas.2010.03.020 PubMedCrossRefGoogle Scholar
  73. Wang YY, Lin SY, Chuang YH, Mao CH, Tung KC, Sheu WH (2010) Protein nitration is associated with increased proteolysis in skeletal muscle of bile duct ligation-induced cirrhotic rats. Metabolism. 59(4):468–472. doi: 10.1016/j.metabol.2009.07.035 PubMedCrossRefGoogle Scholar
  74. Waters DL, Baumgartner RN, Garry PJ, Vellas B (2010) Advantages of dietary, exercise-related, and therapeutic interventions to prevent and treat sarcopenia in adult patients: an update. Clin Interv Aging 5:259–270PubMedCrossRefGoogle Scholar
  75. Wüst RC, Morse CI, de Haan A, Rittweger J, Jones DA, Degens H (2008) Skeletal muscle properties and fatigue resistance in relation to smoking history. Eur J Appl Physiol 104(1):103–110. doi: 10.1007/s00421-008-0792-9 PubMedCrossRefGoogle Scholar
  76. Xie XT, Liu Q, Wu J, Wakui M (2009) Impact of cigarette smoking in type 2 diabetes development. Acta Pharmacol Sin 30(6):784–787. doi: 10.1038/aps.2009.49 PubMedCrossRefGoogle Scholar
  77. Yeo WS, Lee SJ, Lee JR, Kim KP (2008) Nitrosative protein tyrosine modifications: biochemistry and functional significance. BMB Reps 41(3):194–203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Oren Rom
    • 1
  • Sharon Kaisari
    • 1
  • Dror Aizenbud
    • 1
    • 2
  • Abraham Z. Reznick
    • 1
    Email author
  1. 1.Department of Anatomy and Cell Biology, Rappaport Faculty of MedicineTechnion–Israel Institute of TechnologyHaifaIsrael
  2. 2.Orthodontic and Craniofacial DepartmentRambam Health Care CampusHaifaIsrael

Personalised recommendations