Journal of Muscle Research and Cell Motility

, Volume 33, Issue 2, pp 145–152

Ultrastructure of cardiac muscle in reptiles and birds: optimizing and/or reducing the probability of transmission between calcium release units

  • Stefano Perni
  • V. Ramesh Iyer
  • Clara Franzini-Armstrong
Original Paper

Abstract

It is known that cardiac myocytes contain three categories of calcium release units (CRUs) all bearing arrays of RyR2: peripheral couplings, constituted of an association of the junctional SR (jSR) with the plasmalemma; dyads, associations between jSR and T tubules; internal extended junctional jSR (EjSR)/corbular jSR that is not associated with plasmalemma/T tubules. The bird hearts, even if fast beating (e.g., in finch and hummingbird) have no T tubules, despite fiber sizes comparable to those of mammalian ventricle, but are rich in EjSR/corbular SR. The heart of small lizard also lacks T tubule, but it has only peripheral couplings and compensates for lack of internal CRUs by the small diameter of its cells. We have extended previous information on chicken heart to finch and lizard by establishing a spatial relationship between RyR2 clusters in jSR of peripheral couplings and clusters of intra-membrane particles identifiable as voltage sensitive calcium channels (CaV1.2) in the adjacent plasmalemma. This provides the structural basis for initiation of the heart beat in all three species. Further we evaluated the distances separating peripheral couplings from each other and between EjSR/corbular SR sites within the bird muscles in all three hearts. The distances suggest that peripheral coupling sites are most likely to act independently of each other and that a calcium wave-front propagation from one internal CRU site to the other across the level of the Z line, may be marginally successful in the chicken, but certainly very effective in the finch.

Keywords

Calcium release units (CRUs) Sarcoplasmic reticulum Excitation contraction coupling T tubules Finch Lizard 

References

  1. Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, Soeller C (2009) Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci USA 106:22275–22280PubMedCrossRefGoogle Scholar
  2. Baldwin KM (1970) The fine structure and electrophysiology of heart muscle cell injury. J Cell Biol 46:455–476PubMedCrossRefGoogle Scholar
  3. Berge PI (1979) The cardiac ultrastructure of Chimaera monstrosa L. (Elasmobranchii: Holocephali). Cell Tissue Res 201:181–195PubMedCrossRefGoogle Scholar
  4. Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205PubMedCrossRefGoogle Scholar
  5. Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107:2587–2600PubMedCrossRefGoogle Scholar
  6. Bossen EH, Sommer JR (1984) Comparative stereology of the lizard and frog myocardium. Tissue Cell 16:173–178PubMedCrossRefGoogle Scholar
  7. Bossen EH, Sommer JR, Waugh RA (1978) Comparative stereology of the mouse and finch left ventricle. Tissue Cell 10:773–784PubMedCrossRefGoogle Scholar
  8. Carl SL, Felix K, Caswell AH, Brandt NR, Ball WJ Jr, Vaghy PL, Meissner G, Ferguson DG (1995) Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium. J Cell Biol 129:673–682PubMedCrossRefGoogle Scholar
  9. Dolber PC, Sommer JR (1984) Corbular sarcoplasmic reticulum of rabbit cardiac muscle. J Ultrastruct Res 87:190–196PubMedCrossRefGoogle Scholar
  10. Fabiato A (1989) Appraisal of the physiological relevance of two hypothesis for the mechanism of calcium release from the mammalian cardiac sarcoplasmic reticulum: calcium-induced release versus charge-coupled release. Mol Cell Biochem 89:135–140PubMedCrossRefGoogle Scholar
  11. Franzini-Armstrong C, Protasi F, Ramesh V (1998) Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle. Ann N Y Acad Sci 853:20–30PubMedCrossRefGoogle Scholar
  12. Franzini-Armstrong C, Protasi F, Ramesh V (1999) Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J 77:1528–1539PubMedCrossRefGoogle Scholar
  13. Grimley PM, Edwards GA (1960) The ultrastructure of cardiac desnosomes in the toad and their relationship to the intercalated disc. J Biophys Biochem Cytol 8:305–318PubMedCrossRefGoogle Scholar
  14. Hirakow R (1971) The fine structure of the Necturus (amphibia) heart. Am J Anat 132:401–422PubMedCrossRefGoogle Scholar
  15. Jewett PH, Sommer JR, Johnson EA (1971) Cardiac muscle. Its ultrastructure in the finch and hummingbird with special reference to the sarcoplasmic reticulum. J Cell Biol 49:50–65PubMedCrossRefGoogle Scholar
  16. Jewett PH, Leonard SD, Sommer JR (1973) Chicken cardiac muscle: its elusive extended junctional sarcoplasmic reticulum and sarcoplasmic reticulum fenestrations. J Cell Biol 56:595–600PubMedCrossRefGoogle Scholar
  17. Junker J, Sommer JR, Sar M, Meissner G (1994) Extended junctional sarcoplasmic reticulum of avian cardiac muscle contains functional ryanodine receptors. J Biol Chem 269:1627–1634PubMedGoogle Scholar
  18. Leknes IL (1980) Ultrastructure of atrial endocardium and myocardium in three species of gadidae (Teleostei). Cell Tissue Res 210:1–10PubMedGoogle Scholar
  19. Protasi F (2002) Structural interaction between RYRs and DHPRs in calcium release units of cardiac and skeletal muscle cells. Front Biosci 7:d650–d658PubMedCrossRefGoogle Scholar
  20. Protasi F, Sun XH, Franzini-Armstrong C (1996) Formation and maturation of the calcium release apparatus in developing and adult avian myocardium. Dev Biol 173:265–278PubMedCrossRefGoogle Scholar
  21. Santer RM (1974) The organization of the sarcoplasmic reticulum in teleost ventricular myocardial cells. Cell Tissue Res 151:395–402PubMedCrossRefGoogle Scholar
  22. Santer RM, Cobb JL (1972) The fine structure of the heart of the teleost, Pleuronectes platessa L. Z Zellforsch Mikrosk Anat 131:1–14PubMedCrossRefGoogle Scholar
  23. Sommer JR (1982) The anatomy of the sarcoplasmic reticulum in vertebrate skeletal muscle: its implications for excitation contraction coupling. Z Naturforsch C 37:665–678PubMedGoogle Scholar
  24. Sommer JR (1995) Comparative anatomy: in praise of a powerful approach to elucidate mechanisms translating cardiac excitation into purposeful contraction. J Mol Cell Cardiol 27:19–35PubMedCrossRefGoogle Scholar
  25. Sommer JR, Johnson EA (1969) Cardiac muscle. A comparative ultrastructural study with special reference to frog and chicken hearts. Z Zellforsch Mikrosk Anat 98:437–468PubMedCrossRefGoogle Scholar
  26. Sommer JR, Bossen E, Dalen H, Dolber P, High T, Jewett P, Johnson EA, Junker J, Leonard S, Nassar R et al (1991) To excite a heart: a bird’s view. Acta Physiol Scand Suppl 599:5–21PubMedGoogle Scholar
  27. Sommer JR, High T, Ingram P, Kopf D, Nassar R, Taylor I (1998) EJSR/JSR: three-dimensional geometry of an ionic charge with fuse. Ann N Y Acad Sci 853:361–364PubMedCrossRefGoogle Scholar
  28. Stern MD (1992) Theory of excitation–contraction coupling in cardiac muscle. Biophys J 63:497–517PubMedCrossRefGoogle Scholar
  29. Sun XH, Protasi F, Takahashi M, Takeshima H, Ferguson DG, Franzini-Armstrong C (1995) Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. J Cell Biol 129:659–671PubMedCrossRefGoogle Scholar
  30. Tijskens P, Meissner G, Franzini-Armstrong C (2003) Location of ryanodine and dihydropyridine receptors in frog myocardium. Biophys J 84:1079–1092PubMedCrossRefGoogle Scholar
  31. Waugh RA, Sommer JR (1974) Lamellar junctional sarcoplasmic reticulum. A specialization of cardiac sarcoplasmic reticulum. J Cell Biol 63:337–343PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Stefano Perni
    • 1
  • V. Ramesh Iyer
    • 2
  • Clara Franzini-Armstrong
    • 1
  1. 1.Department of Cell and Developmental BiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA
  2. 2.Division of CardiologyChildren Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations