Diverse roles of the actin cytoskeleton in striated muscle

  • Anthony J. Kee
  • Peter W. Gunning
  • Edna C. Hardeman


In addition to the highly specialized contractile apparatus, it is becoming increasingly clear that there is an extensive actin cytoskeleton which underpins a wide range of functions in striated muscle. Isoforms of cytoskeletal actin and actin-associated proteins (non-muscle myosins, cytoskeletal tropomyosins, and cytoskeletal α-actinins) have been detected in a number of regions of striated muscle: the sub-sarcolemmal costamere, the Z-disc and the T-tubule/sarcoplasmic reticulum membranes. As the only known function of these proteins is through association with actin filaments, their presence in striated muscles indicates that there are spatially and functionally distinct cytoskeletal actin filament systems in these tissues. These filaments are likely to have important roles in mechanical support, ion channel function, myofibrillogenenous and vesicle trafficking.


Actin cytoskeleton Striated muscle 


  1. Allard B (2006) Sarcolemmal ion channels in dystrophin-deficient skeletal muscle fibres. J Muscle Res Cell Motil 27:367–373CrossRefPubMedGoogle Scholar
  2. Amsili S, Zer H, Hinderlich S, Krause S, Becker-Cohen M, MacArthur DG, North KN, Mitrani-Rosenbaum S (2008) UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) binds to alpha-actinin 1: novel pathways in skeletal muscle? PLoS ONE 3:e2477CrossRefPubMedGoogle Scholar
  3. Argov Z, Mitrani-Rosenbaum S (2008) The hereditary inclusion body myopathy enigma and its future therapy. Neurotherapeutics 5:633–637CrossRefPubMedGoogle Scholar
  4. Baines AJ, Pinder JC (2005) The spectrin-associated cytoskeleton in mammalian heart. Front Biosci 10:3020–3033CrossRefPubMedGoogle Scholar
  5. Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392PubMedGoogle Scholar
  6. Bennett PM, Baines AJ, Lecomte MC, Maggs AM, Pinder JC (2004) Not just a plasma membrane protein: in cardiac muscle cells α-II spectrin also shows a close association with myofibrils. J Muscle Res Cell Motil 25:119–126CrossRefPubMedGoogle Scholar
  7. Bitoun M, Durieux A-C, Prudhon B, Bevilacqua JA, Herledan A, Sakanyan V, Urtizberea A, Cartier L, Romero NB, Guicheney P (2009) Dynamin 2 mutations associated with human diseases impair clathrin-mediated receptor endocytosis. Hum Mutat 30:1–9CrossRefGoogle Scholar
  8. Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329PubMedGoogle Scholar
  9. Brozinick JT, Hawkins ED, Strawbridge AB, Elmendorf JS (2004) Disruption of cortical actin in skeletal muscle demonstrates an essential role of the cytoskeleton in GLUT4 translocation in insulin sensitive tissues. J Biol Chem 279:40699–40706CrossRefPubMedGoogle Scholar
  10. Bryce NS, Schevzov G, Ferguson V, Percival JM, Lin JJ, Matsumura F, Bamburg JR, Jeffrey PL, Hardeman EC, Gunning P, Weinberger RP (2003) Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol Biol Cell 14:1002–1016CrossRefPubMedGoogle Scholar
  11. Calaghan SC, Le Guennec JY, White E (2004) Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Prog Biophys Mol Biol 84:29–59CrossRefPubMedGoogle Scholar
  12. Cao C, Backer JM, Laporte J, Bedrick EJ, Wandinger-Ness A (2008) Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Mol Biol Cell 19:3334–3346CrossRefPubMedGoogle Scholar
  13. Chen F, Mottino G, Shin VY, Frank JS (1997) Subcellular distribution of ankyrin in developing rabbit heart-relationship to the Na+–Ca2+ exchanger. J Mol Cell Cardiol 29:2621–2629CrossRefPubMedGoogle Scholar
  14. Chen XW, Leto D, Chiang SH, Wang Q, Saltiel AR (2007) Activation of RalA is required for insulin-stimulated GLUT4 trafficking to the plasma membrane via the exocyst and the motor protein Myo1c. Dev Cell 13:391–404CrossRefPubMedGoogle Scholar
  15. Clark KA, McElhinny AS, Beckerle MC, Gregorio CC (2002) Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 18:637–706CrossRefPubMedGoogle Scholar
  16. Corrado K, Rafael JA, Mills PL, Cole NM, Faulkner JA, Wang K, Chamberlain JS (1996) Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a “mild Becker” phenotype. J Cell Biol 134:873–884CrossRefPubMedGoogle Scholar
  17. Craig SW, Pardo JV (1983) Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites. Cell Motil 3:449–462CrossRefPubMedGoogle Scholar
  18. Creed SJ, Bryce N, Naumanen P, Weinberger R, Lappalainen P, Stehn J, Gunning P (2008) Tropomyosin isoforms define distinct microfilament populations with different drug susceptibility. Eur J Cell Biol 87:709–720CrossRefPubMedGoogle Scholar
  19. Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW (1997) Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc Nat Acad Sci USA 94:9493–9498CrossRefPubMedGoogle Scholar
  20. Dalby-Payne JR, O’Loughlin EV, Gunning P (2003) Polarization of specific tropomyosin isoforms in gastrointestinal epithelial cells and their impact on CFTR at the apical surface. Mol Biol Cell 14:4365–4375CrossRefPubMedGoogle Scholar
  21. Du A, Sanger JM, Linask KK, Sanger JW (2003) Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm. Dev Biol 257:382–394CrossRefPubMedGoogle Scholar
  22. Dudnakova TV, Stepanova OV, Dergilev KV, Chadin AV, Shekhonin BV, Watterson DM, Shirinsky VP (2006) Myosin light chain kinase colocalizes with nonmuscle myosin IIB in myofibril precursors and sarcomeric Z-lines of cardiomyocytes. Cell Motil Cytoskelet 63:375–383CrossRefGoogle Scholar
  23. Eisenberg BR (1983) Quantitative ultrastructure of mammalian skeletal muscle. In: Peachey LD, Adrian RH, Geiger SR (eds) Handbook of physiology. Section 10: skeletal muscle. Amercian Physiology Society, BethesdaGoogle Scholar
  24. Ervasti JM (2003) Costameres: the Achilles’ heel of Herculean muscle. J Biol Chem 278:13591–13594CrossRefPubMedGoogle Scholar
  25. Flucher BE, Morton ME, Froehner SC, Daniels MP (1990) Localization of the alpha 1 and alpha 2 subunits of the dihydropyridine receptor and ankyrin in skeletal muscle triads. Neuron 5:339–351CrossRefPubMedGoogle Scholar
  26. Flucher BE, Takekura H, Franzini-Armstrong C (1993) Development of the excitation–contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Dev Biol 160:135–147CrossRefPubMedGoogle Scholar
  27. Foster LJ, Rudich A, Talior I, Patel N, Huang X, Furtado LM, Bilan PJ, Mann M, Klip A (2006) Insulin-dependent interactions of proteins with GLUT4 revealed through stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 5:64–75CrossRefPubMedGoogle Scholar
  28. Gunning P, Weinberger R, Jeffrey P, Hardeman E (1998) Isoform sorting and the creation of intracellular compartments. Annu Rev Cell Dev Biol 14:339–372CrossRefPubMedGoogle Scholar
  29. Gunning PW, Schevzov G, Kee AJ, Hardeman EC (2005) Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 15:334–341CrossRefGoogle Scholar
  30. Gunning P, O’Neill G, Hardeman E (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88:1–35CrossRefPubMedGoogle Scholar
  31. Haase H (2007) Ahnak, a new player in beta-adrenergic regulation of the cardiac L-type Ca2+ channel. Cardiovasc Res 73:19–25CrossRefPubMedGoogle Scholar
  32. Haase H, Pagel I, Khalina Y, Zacharzowsky U, Person V, Lutsch G, Petzhold D, Kott M, Schaper J, Morano I (2004) The carboxyl-terminal ahnak domain induces actin bundling and stabilizes muscle contraction. FASEB J 18:839–841PubMedGoogle Scholar
  33. Hall ZW, Lubit BW, Schwartz JH (1981) Cytoplasmic actin in postsynaptic structures at the neuromuscular junction. J Cell Biol 90:789–792CrossRefPubMedGoogle Scholar
  34. Hanft LM, Rybakova IN, Patel JR, Rafael-Fortney JA, Ervasti JM (2006) Cytoplasmic γ-actin contributes to a compensatory remodeling response in dystrophin-deficient muscle. Proc Natl Acad Sci USA 103:5385–5390CrossRefPubMedGoogle Scholar
  35. Hanft LM, Bogan DJ, Mayer U, Kaufman SJ, Kornegay JN, Ervasti JM (2007) Cytoplasmic γ-actin expression in diverse animal models of muscular dystrophy. Neuromuscul Disord 17:569–574CrossRefPubMedGoogle Scholar
  36. Hayes NV, Scott C, Heerkens E, Ohanian V, Maggs AM, Pinder JC, Kordeli E, Baines AJ (2000) Identification of a novel C-terminal variant of βII spectrin: two isoforms of βII spectrin have distinct intracellular locations and activities. J Cell Sci 113:2023–2034PubMedGoogle Scholar
  37. Hohaus A, Person V, Behlke J, Schaper J, Morano I, Haase H (2002) The carboxyl-terminal region of ahnak provides a link between cardiac L-type Ca2+ channels and the actin-based cytoskeleton. FASEB J 16:1205–1216CrossRefPubMedGoogle Scholar
  38. Hook J, Lemckert F, Qin H, Schevzov G, Gunning P (2003) Gamma tropomyosin gene products are required for embryonic development. Mol Cell Biol 24:2318–2323CrossRefGoogle Scholar
  39. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016CrossRefPubMedGoogle Scholar
  40. Hughes JA, Cooke-Yarborough CM, Chadwick NC, Schevzov G, Arbuckle SM, Gunning P, Weinberger RP (2003) High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors. Glia 42:25–35CrossRefPubMedGoogle Scholar
  41. Johnson BD, Scheuer T, Catterall WA (2005) Convergent regulation of skeletal muscle Ca2+ channels by dystrophin, the actin cytoskeleton, and cAMP-dependent protein kinase. Proc Natl Acad Sci USA 102:4191–4196CrossRefPubMedGoogle Scholar
  42. Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26CrossRefPubMedGoogle Scholar
  43. Kanzaki M (2006) Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocr J 53:267–293CrossRefPubMedGoogle Scholar
  44. Kee AJ, Schevzov G, Nair-Shalliker V, Robinson CS, Vrhovski B, Ghoddusi M, Qiu MR, Lin JJC, Weinberger R, Gunning PW, Hardeman EC (2004) Sorting of a nonmuscle tropomyosin to a novel cytoskeletal compartment in skeletal muscle results in muscular dystrophy. J Cell Biol 166:685–696CrossRefPubMedGoogle Scholar
  45. Kee AJ, Gunning PW, Hardeman EC (2009) A cytoskeletal tropomyosin can compromise the structural integrity of skeletal muscle. Cell Motil Cytoskelet 66:710–720CrossRefGoogle Scholar
  46. Khan AH, Thurmond DC, Yang C, Ceresa BP, Sigmund CD, Pessin JE (2001) Munc18c regulates insulin-stimulated glut4 translocation to the transverse tubules in skeletal muscle. J Biol Chem 276:4063–4069CrossRefPubMedGoogle Scholar
  47. Kordeli E (2000) The spectrin-based skeleton at the postsynaptic membrane of the neuromuscular junction. Microsc Res Tech 49:101–107CrossRefPubMedGoogle Scholar
  48. Kordeli E, Ludosky MA, Deprette C, Frappier T, Cartaud J (1998) AnkyrinG is associated with the postsynaptic membrane and the sarcoplasmic reticulum in the skeletal muscle fiber. J Cell Sci 111:2197–2207PubMedGoogle Scholar
  49. Kostin S, Scholz D, Shimada T, Maeno Y, Mollnau H, Hein S, Schaper J (1998) The internal and external protein scaffold of the T-tubular system in cardiomyocytes. Cell Tissue Res 294:449–460CrossRefPubMedGoogle Scholar
  50. Lader AS, Kwiatkowski DJ, Cantiello HF (1999) Role of gelsolin in the actin filament regulation of cardiac L-type calcium channels. Am J Physiol 277:C1277–C1283PubMedGoogle Scholar
  51. Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182CrossRefPubMedGoogle Scholar
  52. Lauritzen HP, Ploug T, Prats C, Tavare JM, Galbo H (2006) Imaging of insulin signaling in skeletal muscle of living mice shows major role of T-tubules. Diabetes 55:1300–1306CrossRefPubMedGoogle Scholar
  53. Leach RN, Desai JC, Orchard CH (2005) Effect of cytoskeleton disruptors on L-type Ca channel distribution in rat ventricular myocytes. Cell Calcium 38:515–526CrossRefPubMedGoogle Scholar
  54. Li ZP, Burke EP, Frank JS, Bennett V, Philipson KD (1993) The cardiac Na+–Ca2+ exchanger binds to the cytoskeletal protein ankyrin. J Biol Chem 268:11489–11491PubMedGoogle Scholar
  55. Lin JJ, Warren KS, Wamboldt DD, Wang T, Lin JL (1997) Tropomyosin isoforms in nonmuscle cells. Int Rev Cytol 170:1–38CrossRefPubMedGoogle Scholar
  56. Lloyd CM, Berendse M, Lloyd DG, Schevzov G, Grounds MD (2004) A novel role for non-muscle gamma-actin in skeletal muscle sarcomere assembly. Exp Cell Res 297:82–96CrossRefPubMedGoogle Scholar
  57. LoRusso SM, Rhee D, Sanger JM, Sanger JW (1997) Premyofibrils in spreading adult cardiomyocytes in tissue culture: evidence for reexpression of the embryonic program for myofibrillogenesis in adult cells. Cell Motil Cytoskelet 37:183–198CrossRefGoogle Scholar
  58. Lowe JS, Palygin O, Bhasin N, Hund TJ, Boyden PA, Shibata E, Anderson ME, Mohler PJ (2008) Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. J Cell Biol 180:173–186CrossRefPubMedGoogle Scholar
  59. Lubit BW (1984) Association of beta-cytoplasmic actin with high concentrations of acetylcholine receptor (AChR) in normal and anti-AChR-treated primary rat muscle cultures. J Histochem Cytochem 32:973–981PubMedGoogle Scholar
  60. Lubit BW, Schwartz JH (1980) An antiactin antibody that distinguishes between cytoplasmic and skeletal muscle actins. J Cell Biol 86:891–897CrossRefPubMedGoogle Scholar
  61. Messina DA, Lemanski LF (1989) Immunocytochemical studies of spectrin in hamster cardiac tissue. Cell Motil Cytoskelet 12:139–149CrossRefGoogle Scholar
  62. Mohler PJ, Wehrens XHT (2007) Mechanisms of human arrhythmia syndromes: abnormal cardiac macromolecular interactions. Physiology 22:342–350CrossRefPubMedGoogle Scholar
  63. Mohler PJ, Rivolta I, Napolitano C, LeMaillet G, Lambert S, Priori SG, Bennett V (2004) Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc Nat Acad Sci USA 101:17533–17538CrossRefPubMedGoogle Scholar
  64. Mohler PJ, Davis JQ, Bennett V (2005) Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain. PLoS Biol 3:e423CrossRefPubMedGoogle Scholar
  65. Nakata T, Nishina Y, Yorifuji H (2001) Cytoplasmic γ-actin as a Z-disc protein. Biochem Biophys Res Commun 286:156–163CrossRefPubMedGoogle Scholar
  66. Otey CA, Kalnoski MH, Bulinski JC (1987) Identification and quantification of actin isoforms in vertebrate cells and tissues. J Cell Biochem 34:113–124CrossRefPubMedGoogle Scholar
  67. Papponen H, Kaisto T, Leinonen S, Kaakinen M, Metsikko K (2009) Evidence for γ-actin as a Z disc component in skeletal myofibers. Exp Cell Res 315:218–225CrossRefPubMedGoogle Scholar
  68. Pardo JV, Pittenger MF, Craig SW (1983a) Subcellular sorting of isoactins: selective association of gamma actin with skeletal muscle mitochondria. Cell 32:1093–1103CrossRefPubMedGoogle Scholar
  69. Pardo JV, Siliciano JD, Craig SW (1983b) A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci USA 80:1008–1012CrossRefPubMedGoogle Scholar
  70. Percival JM, Thomas G, Cock TA, Gardiner EM, Jeffrey PL, Lin JJ, Weinberger RP, Gunning P (2000) Sorting of tropomyosin isoforms in synchronised NIH 3T3 fibroblasts: evidence for distinct microfilament populations. Cell Motil Cytoskelet 47:189–208CrossRefGoogle Scholar
  71. Percival JM, Hughes JAI, Brown DL, Schevzov G, Heimann K, Vrhovski B, Bryce N, Stow JL, Gunning PW (2004) Targeting of a tropomyosin isoform to short microfilaments associated with the golgi complex. Mol Biol Cell 15:268–280CrossRefPubMedGoogle Scholar
  72. Ploug T, van Deurs B, Ai H, Cushman SW, Ralston E (1998) Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. J Cell Biol 142:1429–1446CrossRefPubMedGoogle Scholar
  73. Porter GA, Dmytrenko GM, Winkelmann JC, Bloch RJ (1992) Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J Cell Biol 117:997–1005Google Scholar
  74. Prins KW, Lowe DA, Ervasti JM (2008) Skeletal muscle-specific ablation of γ-cyto-actin does not exacerbate the mdx phenotype. PLoS ONE 3:e2419CrossRefPubMedGoogle Scholar
  75. Rudich A, Klip A (2003) Push/pull mechanisms of GLUT4 traffic in muscle cells. Acta Physiol Scand 178:297–308CrossRefPubMedGoogle Scholar
  76. Rueckschloss U, Isenberg G (2001) Cytochalasin D reduces Ca2+ currents via cofilin-activated depolymerization of F-actin in guinea-pig cardiomyocytes. J Physiol 537:363–370CrossRefPubMedGoogle Scholar
  77. Rybakova IN, Ervasti JM (2005) Identification of spectrin-like repeats required for high affinity utrophin–actin interaction. J Biol Chem 280:23018–23023CrossRefPubMedGoogle Scholar
  78. Rybakova IN, Patel JR, Ervasti JM (2000) The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol 150:1209–1214CrossRefPubMedGoogle Scholar
  79. Rybakova IN, Patel JR, Davies KE, Yurchenco PD, Ervasti JM (2002) Utrophin binds laterally along actin filaments and can couple costameric actin with sarcolemma when overexpressed in dystrophin-deficient muscle. Mol Biol Cell 13:1512–1521CrossRefPubMedGoogle Scholar
  80. Sanger JW, Kang S, Siebrands CC, Freeman N, Du A, Wang J, Stout AL, Sanger JM (2006) How to build a myofibril. J Muscle Res Cell Motil 26:1343–1354CrossRefGoogle Scholar
  81. Schevzov G, Bryce NS, Monte-Baldonado R, Joya J, Lin JJ, Hardeman E, Weinberger R, Gunning P (2005a) Specific features of neuronal size and shape are regulated by tropomyosin isoforms. Mol Biol Cell 16:3425–3437CrossRefPubMedGoogle Scholar
  82. Schevzov G, Vrhovski B, Bryce NS, Elmir S, Qiu MR, O’Neill GM, Yang N, Verrills NM, Kavallaris M, Gunning PW (2005b) Tissue-specific tropomyosin isoform composition. J Histochem Cytochem 53:557–570CrossRefPubMedGoogle Scholar
  83. Schevzov G, Fath T, Vrhovski B, Vlahovich N, Rajan S, Hook J, Joya JE, Lemckert F, Puttur F, Lin JJC et al (2008) Divergent regulation of the sarcomere and the cytoskeleton. J Biol Chem 283:275–283CrossRefPubMedGoogle Scholar
  84. Schwartz RJ, Rothblum KN (1981) Gene switching in myogenesis: differential expression of the chicken actin multigene family. Biochemistry 20:4122–4129CrossRefPubMedGoogle Scholar
  85. Shani M, Zevin-Sonkin D, Saxel O, Carmon Y, Katcoff D, Nudel U, Yaffe D (1981) The correlation between the synthesis of skeletal muscle actin, myosin heavy chain, and myosin light chain and the accumulation of corresponding mRNA sequences during myogenesis. Dev Biol 86:483–492CrossRefPubMedGoogle Scholar
  86. Sjoblom B, Salmazo A, Djinovic-Carugo K (2008) Alpha-actinin structure and regulation. Cell Mol Life Sci 65:2688–2701CrossRefPubMedGoogle Scholar
  87. Sonnemann KJ, Fitzsimons DP, Patel JR, Liu Y, Schneider M, Moss RL, Ervasti J (2006) Cytoplasmic γ-actin is not required for skeletal muscle development but its absence leads to a progressive myopathy. Dev Cell 11:387–397CrossRefPubMedGoogle Scholar
  88. Takeda K, Yu ZX, Qian S, Chin TK, Adelstein RS, Ferrans VJ (2000) Nonmuscle myosin II localizes to the Z-lines and intercalated discs of cardiac muscle and to the Z-lines of skeletal muscle. Cell Motil Cytoskelet 46:59–68CrossRefGoogle Scholar
  89. Talior-Volodarsky I, Randhawa VK, Zaid H, Klip A (2008) Alpha-actinin-4 is selectively required for insulin-induced GLUT4 translocation. J Biol Chem 283:25115–25123CrossRefPubMedGoogle Scholar
  90. Tondeleir D, Vandamme D, Vandekerckhove J, Ampe C, Lambrechts A (2009) Actin isoform expression patterns during mammalian development and in pathology: insights from mouse models. Cell Motil Cytoskelet 66:798–815CrossRefGoogle Scholar
  91. Tong P, Khayat ZA, Huang C, Patel N, Ueyama A, Klip A (2001) Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles. J Clin Invest 108:371–381PubMedGoogle Scholar
  92. Tsakiridis T, Vranic M, Klip A (1994) Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. J Biol Chem 269:29934–29942PubMedGoogle Scholar
  93. Vandekerckhove J, Weber K (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126:783–802CrossRefPubMedGoogle Scholar
  94. Vlahovich N, Schevzov G, Nair-Shaliker V, Ilkovski B, Artap ST, Joya JE, Kee AJ, North KN, Gunning PW, Hardeman EC (2008) Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle. Cell Motil Cytoskelet 65:73–85CrossRefGoogle Scholar
  95. Vlahovich N, Kee AJ, van der Poel C, Kettle E, Hernandez-Deviez D, Lucas C, Lynch GS, Parton RG, Gunning PW, Hardeman EC (2009) Cytoskeletal tropomyosin Tm5NM1 is required for normal excitation–contraction coupling in skeletal muscle. Mol Biol Cell 20:400–409CrossRefPubMedGoogle Scholar
  96. von Arx P, Bantle S, Soldati T, Perriard JC (1995) Dominant negative effect of cytoplasmic actin isoproteins on cardiomyocyte cytoarchitecture and function. J Cell Biol 131:1759–1773CrossRefGoogle Scholar
  97. Vrhovski B, Schevzov G, Dingle S, Lessard JL, Gunning P, Weinberger RP (2003) Tropomyosin isoforms from the gamma gene differing at the C-terminus are spatially and developmentally regulated in the brain. J Neurosci Res 72:373–383CrossRefPubMedGoogle Scholar
  98. Yoshizaki T, Imamura T, Babendure JL, Lu JC, Sonoda N, Olefsky JM (2007) Myosin 5a is an insulin-stimulated Akt2 (Protein Kinase B{β}) substrate modulating GLUT4 vesicle translocation. Mol Cell Biol 27:5172–5183CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Anthony J. Kee
    • 1
  • Peter W. Gunning
    • 2
  • Edna C. Hardeman
    • 1
  1. 1.Department of Anatomy, School of Medical SciencesUniversity of New South WalesSydneyAustralia
  2. 2.Department of Pharmacology, School of Medical SciencesUniversity of New South WalesSydneyAustralia

Personalised recommendations