Advertisement

Pathological defects in congenital myopathies

  • Caroline A. SewryEmail author
Review Paper

Abstract

Congenital myopathies are a molecularly, pathologically and clinically heterogenous group of disorders defined by hypotonia and muscle weakness, that usually present at birth or early childhood, in association with a characteristic morphological defect. The most common morphological defects are nemaline rods, cores of varying size, central nuclei, and type I fibre hypotrophy, with or without an additional abnormality. The defective genes responsible for many of the congenital myopathies are known, but there is considerable clinico-pathological overlap. In particular, defects in more than one gene are associated with the presence of the same pathological feature, while defects in the same gene can result in more than one pathological feature. Understanding the complexities of these spectra is paramount to the elucidation of pathogenesis, and to the development of therapies.

Keywords

Congenital myopathy Nemaline myopathy Core myopathy Myotubular myopathy Congenital fibre type disproportion 

Notes

Acknowledgments

The financial support of the National Commissioning Group of UK to the Dubowitz Centre for Congenital Muscular Dystrophies and Congenital Myopathies is gratefully acknowledged, together with a grant from the MDA (USA). I am also grateful for the collaboration of a number of colleagues, in particular Professor Francesco Muntoni, and Dr Heinz Jungbluth.

References

  1. Bitoun M, Maugenre S, Jeannet PY, Lacene E, Ferrer X, Laforet P, Martin JJ, Laporte J, Lochmuller H, Beggs AH, Fardeau M, Eymard B, Romero NB, Guicheney P (2005) Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 37:1207–1209. doi: 10.1038/ng1657 PubMedCrossRefGoogle Scholar
  2. Bonnemann CG, Thompson TG, van der Ven PF, Goebel HH, Warlo I, Vollmers B, Reimann J, Herms J, Gautel M, Takada F, Beggs AH, Furst DO, Kunkel LM, Hanefeld F, Schroder R (2003) Filamin C accumulation is a strong but nonspecific immunohistochemical marker of core formation in muscle. J Neurol Sci 206:71–78. doi: 10.1016/S0022-510X(02)00341-6 PubMedCrossRefGoogle Scholar
  3. Carmignac V, Salih MA, Quijano-Roy S, Marchand S, Al Rayess MM, Mukhtar MM, Urtizberea JA, Labeit S, Guicheney P, Leturcq F, Gautel M, Fardeau M, Campbell KP, Richard I, Estournet B, Ferreiro A (2007) C-terminal titin deletions cause a novel early-onset myopathy with fatal cardiomyopathy. Ann Neurol 61:340–351. doi: 10.1002/ana.21089 PubMedCrossRefGoogle Scholar
  4. Clarke NF, Kidson W, Quijano-Roy S, Estournet B, Ferreiro A, Guicheney P, Manson JI, Kornberg AJ, Shield LK, North KN (2006) SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol 59:546–552. doi: 10.1002/ana.20761 PubMedCrossRefGoogle Scholar
  5. Clarke NF, Kolski H, Dye DE, Lim E, Smith RL, Patel R, Fahey MC, Bellance R, Romero NB, Johnson ES, Labarre-Vila A, Monnier N, Laing NG, North KN (2008) Mutations in TPM3 are a common cause of congenital fiber type disproportion. Ann Neurol 63:329–337. doi: 10.1002/ana.21308 PubMedCrossRefGoogle Scholar
  6. D’Amico A, Graziano C, Pacileo G, Petrini S, Nowak KJ, Boldrini R, Jacques A, Feng JJ, Porfirio B, Sewry CA, Santorelli FM, Limongelli G, Bertini E, Laing N, Marston SB (2006) Fatal hypertrophic cardiomyopathy and nemaline myopathy associated with ACTA1 K336E mutation. Neuromuscul Disord 16:548–552. doi: 10.1016/j.nmd.2006.07.005 PubMedCrossRefGoogle Scholar
  7. Dahl N, Hu LJ, Chery M, Fardeau M, Gilgenkrantz S, Nivelon-Chevallier A, Sidaner-Noisette I, Mugneret F, Gouyon JB, Gal A (1995) Myotubular myopathy in a girl with a deletion at Xq27–q28 and unbalanced × inactivation assigns the MTM1 gene to a 600-kb region. Am J Hum Genet 56:1108–1115PubMedGoogle Scholar
  8. Dubowitz V, Sewry CA (2007) Muscle biopsy: a practical approach, 3rd edn. Saunders/Elsevier, Philadeiphia/AmsterdamGoogle Scholar
  9. Foroud T, Pankratz N, Batchman AP, Pauciulo MW, Vidal R, Miravalle L, Goebel HH, Cushman LJ, Azzarelli B, Horak H, Farlow M, Nichols WC (2005) A mutation in myotilin causes spheroid body myopathy. Neurology 65:1936–1940. doi: 10.1212/01.wnl.0000188872.28149.9a PubMedCrossRefGoogle Scholar
  10. Gommans IM, Davis M, Saar K, Lammens M, Mastaglia F, Lamont P, van Duijnhoven G, ter Laak HJ, Reis A, Vogels OJ, Laing N, van Engelen BG, Kremer H (2003) A locus on chromosome 15q for a dominantly inherited nemaline myopathy with core-like lesions. Brain 126:1545–1551. doi: 10.1093/brain/awg162 PubMedCrossRefGoogle Scholar
  11. Gurgel-Giannetti J, Reed U, Bang ML, Pelin K, Donner K, Marie SK, Carvalho M, Fireman MA, Zanoteli E, Oliveira AS, Zatz M, Wallgren-Pettersson C, Labeit S, Vainzof M (2001) Nebulin expression in patients with nemaline myopathy. Neuromuscul Disord 11:154–162. doi: 10.1016/S0960-8966(00)00177-2 PubMedCrossRefGoogle Scholar
  12. Herasse M, Parain K, Marty I, Monnier N, Kaindl AM, Leroy JP, Richard P, Lunardi J, Romero NB, Ferreiro A (2007) Abnormal distribution of calcium-handling proteins: a novel distinctive marker in core myopathies. J Neuropathol Exp Neurol 66:57–65PubMedCrossRefGoogle Scholar
  13. Hutchinson DO, Charlton A, Laing NG, Ilkovski B, North KN (2006) Autosomal dominant nemaline myopathy with intranuclear rods due to mutation of the skeletal muscle ACTA1 gene: clinical and pathological variability within a kindred. Neuromuscul Disord 16(2):113–121PubMedCrossRefGoogle Scholar
  14. Ilkovski B, Clement S, Sewry C, North KN, Cooper ST (2005) Defining alpha-skeletal and alpha-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscul Disord 15:829–835. doi: 10.1016/j.nmd.2005.08.004 PubMedCrossRefGoogle Scholar
  15. Jeannet PY, Mittaz L, Dunand M, Lobrinus JA, Bonafe L, Kuntzer T (2007) Autosomal dominant nemaline myopathy: a new phenotype unlinked to previously known genetic loci. Neuromuscul Disord 17:6–12. doi: 10.1016/j.nmd.2006.10.005 PubMedCrossRefGoogle Scholar
  16. Jungbluth H, Sewry CA, Brown SC, Nowak KJ, Laing NG, Wallgren-Pettersson C, Pelin K, Manzur AY, Mercuri E, Dubowitz V, Muntoni F (2001) Mild phenotype of nemaline myopathy with sleep hypoventilation due to a mutation in the skeletal muscle alpha-actin (ACTA1) gene. Neuromuscul Disord 11:35–40. doi: 10.1016/S0960-8966(00)00167-X PubMedCrossRefGoogle Scholar
  17. Jungbluth H, Muller CR, Halliger-Keller B, Brockington M, Brown SC, Feng L, Chattopadhyay A, Mercuri E, Manzur AY, Ferreiro A, Laing NG, Davis MR, Roper HP, Dubowitz V, Bydder G, Sewry CA, Muntoni F (2002) Autosomal recessive inheritance of RYR1 mutations in a congenital myopathy with cores. Neurology 59:284–287PubMedGoogle Scholar
  18. Jungbluth H, Sewry CA, Buj-Bello A, Kristiansen M, Orstavik KH, Kelsey A, Manzur AY, Mercuri E, Wallgren-Pettersson C, Muntoni F (2003) Early and severe presentation of X-linked myotubular myopathy in a girl with skewed X-inactivation. Neuromuscul Disord 13:55–59. doi: 10.1016/S0960-8966(02)00194-3 PubMedCrossRefGoogle Scholar
  19. Jungbluth H, Zhou H, Sewry CA, Robb S, Treves S, Bitoun M, Guicheney P, Buj-Bello A, Bonnemann C, Muntoni F (2007) Centronuclear myopathy due to a de novo dominant mutation in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 17:338–345. doi: 10.1016/j.nmd.2007.01.016 PubMedCrossRefGoogle Scholar
  20. Kaimaktchiev V, Goebel H, Laing N, Narus M, Weeks D, Nixon R (2006) Intranuclear nemaline rod myopathy. Muscle Nerve 34:369–372. doi: 10.1002/mus.20521 PubMedCrossRefGoogle Scholar
  21. Laing NG (2007) Congenital myopathies. Curr Opin Neurol 20:583–589PubMedCrossRefGoogle Scholar
  22. Laing NG, Clarke NF, Dye DE, Liyanage K, Walker KR, Kobayashi Y, Shimakawa S, Hagiwara T, Ouvrier R, Sparrow JC, Nishino I, North KN, Nonaka I (2004) Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol 56:689–694. doi: 10.1002/ana.20260 PubMedCrossRefGoogle Scholar
  23. Lake BD, Wilson J (1975) Zebra body myopathy. Clinical, histochemical and ultrastructural studies. J Neurol Sci 24:437–446. doi: 10.1016/0022-510X(75)90169-0 PubMedCrossRefGoogle Scholar
  24. Lammens M, Moerman P, Fryns JP, Lemmens F, van de Kamp GM, Goemans N, Dom R (1997) Fetal akinesia sequence caused by nemaline myopathy. Neuropediatrics 28:116–119. doi: 10.1055/s-2007-973683 PubMedCrossRefGoogle Scholar
  25. Laporte J, Bedez F, Bolino A, Mandel JL (2003) Myotubularins, a large disease-associated family of cooperating catalytically active and inactive phosphoinositides phosphatases. Hum Mol Genet 12:R285–R292PubMedCrossRefGoogle Scholar
  26. Mercuri E, Pichiecchio A, Allsop J, Messina S, Pane M, Muntoni F (2007) Muscle MRI in inherited neuromuscular disorders: past, present, and future. J Magn Reson Imaging 25:433–440. doi: 10.1002/jmri.20804 PubMedCrossRefGoogle Scholar
  27. North K (2008) What’s new in congenital myopathies? Neuromuscul Disord 18:433–442. doi: 10.1016/j.nmd.2008.04.002 PubMedCrossRefGoogle Scholar
  28. Nowak K, Ranenscroft G, Jackman C et al (2007) Transgenic expression of cardiac actin rescues skeletal actin-null mice. Neuromuscul Disord 17:899. doi: 10.1016/j.nmd.2007.06.458 abstractCrossRefGoogle Scholar
  29. Pauw-Gommans IM, Gerrits KH, de Haan A, van Engelen BG (2006) Muscle slowness in a family with nemaline myopathy. Neuromuscul Disord 16:477–480. doi: 10.1016/j.nmd.2006.05.003 PubMedCrossRefGoogle Scholar
  30. Penisson-Besnier I, Biancalana V, Reynier P, Cossee M, Dubas F (2007) Diagnosis of myotubular myopathy in the oldest known manifesting female carrier: a clinical and genetic study. Neuromuscul Disord 17:180–185. doi: 10.1016/j.nmd.2006.10.008 PubMedCrossRefGoogle Scholar
  31. Quinzii CM, Vu TH, Min KC, Tanji K, Barral S, Grewal RP, Kattah A, Camano P, Otaegui D, Kunimatsu T, Blake DM, Wilhelmsen KC, Rowland LP, Hays AP, Bonilla E, Hirano M (2008) X-linked dominant scapuloperoneal myopathy is due to a mutation in the gene encoding four-and-a-half-LIM protein 1. Am J Hum Genet 82:208–213. doi: 10.1016/j.ajhg.2007.09.013 PubMedCrossRefGoogle Scholar
  32. Romero NB, Monnier N, Viollet L, Cortey A, Chevallay M, Leroy JP, Lunardi J, Fardeau M (2003) Dominant and recessive central core disease associated with RYR1 mutations and fetal akinesia. Brain 126:2341–2349. doi: 10.1093/brain/awg244 PubMedCrossRefGoogle Scholar
  33. Sanoudou D, Beggs AH (2001) Clinical and genetic heterogeneity in nemaline myopathy—a disease of skeletal muscle thin filaments. Trends Mol Med 7:362–368. doi: 10.1016/S1471-4914(01)02089-5 PubMedCrossRefGoogle Scholar
  34. Sarnat HB (1990) Myotubular myopathy: arrest of morphogenesis of myofibres associated with persistence of fetal vimentin and desmin. Four cases compared with fetal and neonatal muscle. Can J Neurol Sci 17:109–123PubMedGoogle Scholar
  35. Schessl J, Zou Y, McGrath MJ, Cowling BS, Maiti B, Chin SS, Sewry C, Battini R, Hu Y, Cottle DL, Rosenblatt M, Spruce L, Ganguly A, Kirschner J, Judkins AR, Golden JA, Goebel HH, Muntoni F, Flanigan KM, Mitchell CA, Bonnemann CG (2008) Proteomic identification of FHL1 as the protein mutated in human reducing body myopathy. J Clin Invest 118:904–912PubMedGoogle Scholar
  36. Schoser BG, Frosk P, Engel AG, Klutzny U, Lochmuller H, Wrogemann K (2005) Commonality of TRIM32 mutation in causing sarcotubular myopathy and LGMD2H. Ann Neurol 57:591–595. doi: 10.1002/ana.20441 PubMedCrossRefGoogle Scholar
  37. Schroder R, Reimann J, Salmikangas P, Clemen CS, Hayashi YK, Nonaka I, Arahata K, Carpen O (2003) Beyond LGMD1A: myotilin is a component of central core lesions and nemaline rods. Neuromuscul Disord 13:451–455. doi: 10.1016/S0960-8966(03)00064-6 PubMedCrossRefGoogle Scholar
  38. Selcen D, Engel AG (2004) Mutations in myotilin cause myofibrillar myopathy. Neurology 62:1363–1371PubMedGoogle Scholar
  39. Sewry CA (1998) The role of immunocytochemistry in congenital myopathies. Neuromuscul Disord 8:394–400. doi: 10.1016/S0960-8966(98)00053-4 PubMedCrossRefGoogle Scholar
  40. Sewry CA, Muller C, Davis M, Dwyer JS, Dove J, Evans G, Schroder R, Furst D, Helliwell T, Laing N, Quinlivan RC (2002) The spectrum of pathology in central core disease. Neuromuscul Disord 12:930–938. doi: 10.1016/S0960-8966(02)00135-9 PubMedCrossRefGoogle Scholar
  41. Sewry CA, Jimenez-Mallebrera C, Muntoni F (2008) Congenital myopathies. Curr Opin Neurol 21:569–575. doi: 10.1097/WCO.0b013e32830f93c7 PubMedCrossRefGoogle Scholar
  42. Shy GM, Engel WK, Somers JE, Wanko T (1963) Nemaline myopathy. a new congenital myopathy. Brain 86:793–810. doi: 10.1093/brain/86.4.793 PubMedCrossRefGoogle Scholar
  43. Tajsharghi H, Ohlsson M, Lindberg C, Oldfors A (2007) Congenital myopathy with nemaline rods and cap structures caused by a mutation in the beta-tropomyosin gene (TPM2). Arch Neurol 64:1334–1338. doi: 10.1001/archneur.64.9.1334 PubMedCrossRefGoogle Scholar
  44. Tanner SM, Orstavik KH, Kristiansen M, Lev D, Lerman-Sagie T, Sadeh M, Liechti-Gallati S (1999) Skewed X-inactivation in a manifesting carrier of X-linked myotubular myopathy and in her non-manifesting carrier mother. Hum Genet 104:249–253. doi: 10.1007/s004390050943 PubMedCrossRefGoogle Scholar
  45. Wallgren-Pettersson C, Laing N (1996) 40th ENMC sponsored international workshop: nemaline myopathy. 2–4 February 1996, Naarden, The Netherlands. Neuromuscul Disord 6:389–391. doi: 10.1016/0960-8966(96)00354-9
  46. Weeks DA, Nixon RR, Kaimaktchiev V, Mierau GW (2003) Intranuclear rod myopathy, a rare and morphologically striking variant of nemaline rod myopathy. Ultrastruct Pathol 27:151–154. doi: 10.1080/01913120309933 PubMedCrossRefGoogle Scholar
  47. Windpassinger C, Schoser B, Straub V, Hochmeister S, Noor A, Lohberger B, Farra N, Petek E, Schwarzbraun T, Ofner L, Loscher WN, Wagner K, Lochmuller H, Vincent JB, Quasthoff S (2008) An X-linked myopathy with postural muscle atrophy and generalized hypertrophy, termed XMPMA, is caused by mutations in FHL1. Am J Hum Genet 82:88–99. doi: 10.1016/j.ajhg.2007.09.004 PubMedCrossRefGoogle Scholar
  48. Zuchner S, Noureddine M, Kennerson M, Verhoeven K, Claeys K, De Jonghe P, Merory J, Oliveira SA, Speer MC, Stenger JE, Walizada G, Zhu D, Pericak-Vance MA, Nicholson G, Timmerman V, Vance JM (2005) Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nat Genet 37:289–294. doi: 10.1038/ng1514 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Dubowitz Neuromuscular CentreInstitute of Child Health and Great Ormond Street HospitalLondonUK
  2. 2.Wolfson Centre for Inherited Neuromuscular DiseasesRJAH Orthopaedic HospitalOswestryUK

Personalised recommendations