Advertisement

Myosin as a potential redox-sensor: an in vitro study

  • Chiara Passarelli
  • Stefania Petrini
  • Anna Pastore
  • Valentina Bonetto
  • Patrizio Sale
  • Laura M. Gaeta
  • Giulia Tozzi
  • Enrico Bertini
  • Monica Canepari
  • Rosetta Rossi
  • Fiorella PiemonteEmail author
Original Paper

Abstract

A balanced redox status is necessary to optimize force production in contractile apparatus, where free radicals generated by skeletal muscle are involved in some basic physiological processes like excitation–contraction coupling. Protein glutathionylation has a key role in redox regulation of proteins and signal transduction. Here we show that myosin is sensitive to in vitro glutathionylation and MALDI-TOF analysis identified three potential sites of glutathione binding, two of them locating on the myosin head. Glutathionylation of myosin has an important impact on the protein structure, as documented by the lower fluorescence quantum yield of glutathionylated myosin and its increased susceptibility to the proteolytic cleavage. Myosin function is also sensitive to glutathionylation, which modulates its ATPase activity depending on GSSG redox balance. Thus, like the phosphorylation/dephosphorylation cycle, glutathionylation may represent a mechanism by which glutathione modulates sarcomere functions depending on the tissue redox state, and myosin may constitute a muscle redox-sensor.

Keywords

Glutathionylation Oxidative stress Myosin Sarcomere 

Abbreviations

GSH

Reduced glutathione

GSSG

Oxidized glutathione

GSPro

Glutathionylated proteins

ROS

Reactive oxygen species

Notes

Acknowledgments

This study has been supported by grants from “Fondazione Pierfranco e Luisa Mariani”—Italy, Cariplo Foundation (to V·B.) and Telethon Foundation-Italy (to V·B., project n. S01010). V·B. is an Assistant Telethon Scientist.

References

  1. Amin JK, Xiao L, Pimental DR, Pagano PJ, Singh K, Sawyer DB et al (2001) Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:131–139. doi: 10.1006/jmcc.2000.1285 PubMedCrossRefGoogle Scholar
  2. Andrade FH, Reid MB, Allen DG, Westerblad H (1998) Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol 509:565–575. doi: 10.1111/j.1469-7793.1998.565bn.x PubMedCrossRefGoogle Scholar
  3. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316. doi: 10.1074/jbc.272.33.20313 PubMedCrossRefGoogle Scholar
  4. Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB (1988) Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl nitrone. J Clin Invest 82:476–485. doi: 10.1172/JCI113621 PubMedCrossRefGoogle Scholar
  5. Brennan JP, Wait R, Begum S, Bell JR, Dunn MJ, Eaton P (2004) Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis. J Biol Chem 279:41352–41360. doi: 10.1074/jbc.M403827200 PubMedCrossRefGoogle Scholar
  6. Canepari M, Rossi R, Pellegrino MA, Bottinelli R, Schiaffino S (2000) Functional diversity between orthologous myosins with minimal sequence diversity. J Muscle Res Cell Motil 21:375–382. doi: 10.1023/A:1005640004495 PubMedCrossRefGoogle Scholar
  7. Cappelli V, Bottinelli R, Poggesi C, Moggio R, Reggiani C (1989) Shortening velocity and myosin and myofibrillar ATPase activity related to myosin isoenzyme composition during postnatal development in rat myocardium. Circ Res 65:446–457PubMedGoogle Scholar
  8. Casagrande S, Bonetto V, Fratelli M, Gianazza E, Eberini I, Massignan T et al (2002) Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems. Proc Natl Acad Sci USA 99:9745–9749. doi: 10.1073/pnas.152168599 PubMedCrossRefGoogle Scholar
  9. Casoni F, Basso M, Massignan T, Gianazza E, Cheroni C, Salmona M et al (2005) Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis. J Biol Chem 280:16295–16304. doi: 10.1074/jbc.M413111200 PubMedCrossRefGoogle Scholar
  10. Chai YC, Ashraf SS, Rokutan K, Johnston RB Jr, Thomas JA (1994) S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst: evidence against a role for glutathione disulfide. Arch Biochem Biophys 310:273–281. doi: 10.1006/abbi.1994.1167 PubMedCrossRefGoogle Scholar
  11. Choi HJ, Kim SJ, Mukhopadhyay P, Cho S, Woo JR, Storz G et al (2001) Structural basis of the redox switch in the OxyR transcription factor. Cell 105:103–113. doi: 10.1016/S0092-8674(01)00300-2 PubMedCrossRefGoogle Scholar
  12. Cotgreave IA, Gerdes RG (1998) Recent trends in glutathione biochemistry glutathione–protein interactions: a molecular link between oxidative stress and cell proliferation? Biochem Biophys Res Commun 242:1–9. doi: 10.1006/bbrc.1997.7812 PubMedCrossRefGoogle Scholar
  13. Cumming RC, Andon NL, Haynes PA, Park M, Fisher WH, Schubert D (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279:21749–21758. doi: 10.1074/jbc.M312267200 PubMedCrossRefGoogle Scholar
  14. Di Stefano A, Frosali S, Leonini A, Ettorre A, Priora R, Cherubini Di Simplicio F et al (2006) GSH depletion, protein S-glutathionylation and mitochondrial transmembrane potential hyperpolarization are early events in initiation of cell death induced by a mixture of isothiazolinones in HL60 cells. Biochim Biophys Acta 1763:214–225. doi: 10.1016/j.bbamcr.2005.12.012 PubMedCrossRefGoogle Scholar
  15. Eaton B, Byers HL, Leeds N, Ward MA, Schattock MJ (2002) Detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion. J Biol Chem 277:9806–9811. doi: 10.1074/jbc.M111454200 PubMedCrossRefGoogle Scholar
  16. Eu JP, Sun J, Xu L, Stamler JS, Meissner G (2000) The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions. Cell 102:499–509. doi: 10.1016/S0092-8674(00)00054-4 PubMedCrossRefGoogle Scholar
  17. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400Google Scholar
  18. Fratelli M, Demol H, Puype M, Casagrande S, Eberini L, Salmona M et al (2002) Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci USA 99:3505–3510. doi: 10.1073/pnas.052592699 PubMedCrossRefGoogle Scholar
  19. Fratelli M, Demol H, Puype M, Casagrande S, Villa P, Eberini I et al (2003) Identification of proteins undergoing glutathionylation in oxidatively stressed hepatocytes and hepatoma cells. Proteomics 3:1154–1161. doi: 10.1002/pmic.200300436 PubMedCrossRefGoogle Scholar
  20. Fratelli M, Gianazza E, Ghezzi P (2004) Redox proteomics: identification and functional role of glutathionylated proteins. Expert Rev Proteomics 1:365–376. doi: 10.1586/14789450.1.3.365 PubMedCrossRefGoogle Scholar
  21. Fratelli M, Goodwin LO, Orom UA, Lombardi S, Tonelli R, Mengozzi M et al (2005) Gene expression profiling reveals a signaling role of glutathione in redox regulation. Proc Natl Acad Sci USA 102:13998–14003. doi: 10.1073/pnas.0504398102 PubMedCrossRefGoogle Scholar
  22. Ghezzi P, Casagrande S, Massignan T, Basso M, Bellacchio E, Mollica L et al (2006) Redox regulation of cyclophilin A by glutathionylation. Proteomics 6:817–825. doi: 10.1002/pmic.200500177 PubMedCrossRefGoogle Scholar
  23. Giustarini D, Rossi R, Milzani A, Colombo R, Dalle-Donne I (2004) S-glutathionylation: from redox regulation of protein functions to human diseases. J Cell Mol Med 8:201–212. doi: 10.1111/j.1582-4934.2004.tb00275.x PubMedCrossRefGoogle Scholar
  24. Klatt P, Lamas S (2000) Regulation of protein function by S-glutathionylation in response to oxidative and nitrosative stress. Eur J Biochem 267:4928–4944. doi: 10.1046/j.1432-1327.2000.01601.x PubMedCrossRefGoogle Scholar
  25. Konno K, Ue K, Khoroshev M, Martinez H, Ray B, Morales MF (2000) Consequences of placing an intramolecular crosslink in myosin S1. Proc Natl Acad Sci USA 97:1461–1466. doi: 10.1073/pnas.030523997 PubMedCrossRefGoogle Scholar
  26. Krenz M, Sanbe A, Bouyer-Dalloz F, Gulick J, Klevitski R, Hewett TE et al (2003) Analysis of myosin heavy chain functionality in the heart. J Biol Chem 278:17466–17474. doi: 10.1074/jbc.M210804200 PubMedCrossRefGoogle Scholar
  27. Lamb GD, Posterino GS (2003) Effects of oxidation and reduction on contractile function in skeletal muscle fibres of the rat. J Physiol 546:149–163. doi: 10.1113/jphysiol.2002.027896 PubMedCrossRefGoogle Scholar
  28. Lin TK, Hughes G, Muratovska A, Blaikie FH, Brookes PS, Darley-Usmar V et al (2002) Specific modification of mitochondrial protein thiols in response to oxidative stress: a proteomics approach. J Biol Chem 277:17048–17056. doi: 10.1074/jbc.M110797200 PubMedCrossRefGoogle Scholar
  29. Lind C, Gerdes R, Hamnell Y, Schuppe-Koistinen I, von Lowenhielm HB, Holmgren A et al (2002) Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch Biochem Biophys 406:229–240. doi: 10.1016/S0003-9861(02)00468-X PubMedCrossRefGoogle Scholar
  30. Murphy RM, Dutka TL, Lamb GD (2008) Hydroxyl radical and glutathione interactions alter calcium sensitivity and maximum force of the contractile apparatus in rat skeletal muscle fibres. J Physiol 586:22003–22016. doi: 10.1113/jphysiol.2007.150516 CrossRefGoogle Scholar
  31. Pastore A, Tozzi G, Gaeta LM, Bertini E, Serafini V, Di Cesare S et al (2003) Actin glutathionylation increases in fibroblasts of patients with Friedreich’s ataxia: a potential role in the pathogenesis of the disease. J Biol Chem 43:42588–42595. doi: 10.1074/jbc.M301872200 CrossRefGoogle Scholar
  32. Rokutan K, Johnson RB, Kaway K (1994) Oxidative stress induces S-thiolation of specific proteins in cultured gastric mucosal cells. Am J Physiol 266:G247–G254PubMedGoogle Scholar
  33. Sawyer DB, Siwik DA, Xiao L, Pimentel DR, Singh K, Colucci WS (2002) Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol 34:379–388. doi: 10.1006/jmcc.2002.1526 PubMedCrossRefGoogle Scholar
  34. Shattock MJ, Matsuura H (1993) Measurement of Na(+)-K+ pump current in isolated rabbit ventricular myocytes using the whole-cell voltage-clamp technique. Inhibition of the pump by oxidant stress. Circ Res 72:91–101PubMedGoogle Scholar
  35. Sparaco M, Gaeta LM, Tozzi G, Bertini E, Pastore A, Simonati A et al (2006) Protein glutathionylation in human central nervous system: a potential role in redox regulation of neuronal defence against free radicals. J Neurosci Res 83:256–263. doi: 10.1002/jnr.20729 PubMedCrossRefGoogle Scholar
  36. Wang J, Boja ES, Tan W, Tekle E, Fales HM, English S et al (2001) Reversible glutathionylation regulates actin polymerization in A431 cells. J Biol Chem 276:47763–47766PubMedGoogle Scholar
  37. Ward NE, Pierce DS, Chung SE, Gravitt KR, O’Brian CA (1998) Irreversible inactivation of protein kinase C by glutathione. J Biol Chem 273:12558–12566. doi: 10.1074/jbc.273.20.12558 PubMedCrossRefGoogle Scholar
  38. Xie Z, Kometiani JL, Shapiro JI, Askari A (1999) Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem 274:19323–19328. doi: 10.1074/jbc.274.27.19323 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Chiara Passarelli
    • 1
    • 2
  • Stefania Petrini
    • 1
  • Anna Pastore
    • 3
  • Valentina Bonetto
    • 4
  • Patrizio Sale
    • 5
  • Laura M. Gaeta
    • 1
  • Giulia Tozzi
    • 1
  • Enrico Bertini
    • 1
  • Monica Canepari
    • 6
  • Rosetta Rossi
    • 6
  • Fiorella Piemonte
    • 1
    Email author
  1. 1.Molecular Medicine UnitChildren’s Hospital and Research Institute “Bambino Gesù”RomeItaly
  2. 2.Department of BiologyUniversity of Rome “Roma Tre”RomeItaly
  3. 3.Laboratory of BiochemistryChildren’s Hospital and Research Institute “Bambino Gesù”RomeItaly
  4. 4.“Mario Negri” Institute for Pharmacological ResearchDulbecco Telethon InstituteMilanItaly
  5. 5.IRCCS San Raffaele La PisanaRomeItaly
  6. 6.Institute of Human PhysiologyUniversity of PaviaPaviaItaly

Personalised recommendations