Advertisement

Journal of Muscle Research and Cell Motility

, Volume 28, Issue 6, pp 355–362 | Cite as

Specific correlations between muscle oxidative stress and chronic fatigue syndrome: a working hypothesis

  • Stefania Fulle
  • Tiziana Pietrangelo
  • Rosa Mancinelli
  • Raoul Saggini
  • Giorgio FanòEmail author
Review Paper

Abstract

Chronic fatigue syndrome (CFS) is a relatively common disorder defined as a status of severe persistent disabling fatigue and subjective unwellness. While the biological basis of the pathology of this disease has recently been confirmed, its pathophysiology remains to be elucidated. Moreover, since the causes of CFS have not been identified, treatment programs are directed at symptom relief, with the ultimate goal of the patient regaining some level of pre-existing function and well-being. Several studies have examined whether CFS is associated with: (i) a range of infectious agents and or immune disturbance; (ii) specific changes of activity in the central or peripheral nervous systems; and (iii) elevated stress periods, which may be associated with the pathology via genetic mechanisms. The role of oxidative stress in CFS is an emerging focus of research due to evidence of its association with some pathological features of this syndrome. New data collectively support the presence of specific critical points in the muscle that are affected by free radicals and in view of these considerations, the possible role of skeletal muscle oxidative imbalance in the genesis of CFS is discussed.

Keywords

Oxidative Stress E-C coupling Chronic fatigue syndrome 

References

  1. Archard LC, Bowles NE, Behan PO et al (1988) Postviral fatigue syndrome: persistence of enterovirus RNA and elevated creatine kinase. J Roy Soc Med 81:326–329PubMedGoogle Scholar
  2. Bates DW, Buchwald D, Lee J et al (1995) Clinical laboratory test findings in patients with chronic fatigue syndrome. Arch Intern Med 155:97–103PubMedCrossRefGoogle Scholar
  3. Belia S, Pietrangelo T, Fulle S et al (1998) Sodium nitroprusside, a NO donor, modifies Ca2+ transport and mechanical properties in frog skeletal muscle. J Muscle Res Cell Motil 19:865–876PubMedCrossRefGoogle Scholar
  4. Bennett AL, Chao CC, Hu S et al (1997) Elevation of bioactive transforming growth factor-beta in serum from patients with chronic fatigue syndrome. J Clin Immunol 17:160–166PubMedCrossRefGoogle Scholar
  5. Buchwald D, Wener MH, Pearlman T et al (1997) Markers of inflammation and immune activation in chronic fatigue and chronic fatigue syndrome. J Rheumatol 24:372–376PubMedGoogle Scholar
  6. Chia JK (2005) The role of enterovirus in chronic fatigue syndrome. J Clin Pathol 58:1126–1132PubMedCrossRefGoogle Scholar
  7. De Becker P, Roeykens J, Reynders M et al (2000) Exercise capacity in chronic fatigue syndrome. Arch Intern Med 160:3270–3277PubMedCrossRefGoogle Scholar
  8. de Lange FP, Kalkman JS, Bleijenberg G et al (2005) Gray matter volume reduction in the chronic fatigue syndrome. Neuroimage 26:777–781PubMedCrossRefGoogle Scholar
  9. Edwards R, Gibson H, Clague J et al (1993) Muscle physiology and histopathology in chronic fatigue syndrome. In: Kleinman A, Straus S (eds) Chronic fatigue syndrome. Wiley & Sons, Chichester, pp 101–131Google Scholar
  10. Eu JP, Hare JM, Hess DT et al (2003) Concerted regulation of skeletal muscle contractility by oxygen tension and endogenous nitric oxide. Proc Natl Acad Sci USA 100:15229–15234PubMedCrossRefGoogle Scholar
  11. Fukuda K, Straus SE, Hickie I et al (1994) The Chronic Fatigue Syndrome, a comprehensive approach to its definition and study. Ann Intern Med 121:953–959PubMedGoogle Scholar
  12. Fulle S, Belia S, Vecchiet J et al (2003) Modification of the functional capacity of sarcoplasmic reticulum membranes in patients suffering from chronic fatigue syndrome. Neuromuscul Disord 13:479–484PubMedCrossRefGoogle Scholar
  13. Fulle S, Di Donna S, Puglielli C et al (2005) Age-dependent imbalance of the antioxidative system in human satellite cells. Exp Gerontol 40:189–197PubMedCrossRefGoogle Scholar
  14. Fulle S, Mecocci P, Fano G et al (2000) Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome. Free Rad Biol Med 29:1252–1259PubMedCrossRefGoogle Scholar
  15. Gerrity TR, Papanicolaou DA, Amsterdam JD et al (2004) CFIDS Association of America. Immunologic aspects of chronic fatigue syndrome. Report on a Research Symposium convened by The CFIDS Association of America and co-sponsored by the US Centers for Disease Control and Prevention and the National Institutes of Health. Neuroimmunomodulation 11:351–357PubMedCrossRefGoogle Scholar
  16. Gibson H, Carroll N, Clague JE et al (1993) Exercise performance and fatigability in patients with chronic fatigue syndrome. J Neurol Neurosurg Psychiatry 56:993–998PubMedGoogle Scholar
  17. Hanson SJ, Gause W, Natelson B (2001) Detection of immunologically significant factors for chronic fatigue syndrome using neural-network classifiers. Clin Diagn Lab Immunol 8:658–662PubMedCrossRefGoogle Scholar
  18. Hidalgo C, Donoso P, Carrascom MA (2005) The ryanodine receptors Ca2+ release channels: cellular redox sensors?. IUBMB Life 57:315–322PubMedCrossRefGoogle Scholar
  19. Holmes GP, Kaplan JE, Gantz NM et al (1988) Chronic fatigue syndrome: a working case definition. Ann Intern Med 108:387–389PubMedGoogle Scholar
  20. Jason LA, Richman JA, Rademaker AW et al (1999) A community-based study of chronic fatigue syndrome. Arch Intern Med 159:2129–2137PubMedCrossRefGoogle Scholar
  21. Kaiser J (2006) BIOMEDICINE: Genes and Chronic Fatigue How Strong Is the Evidence?. Science 312:669–671PubMedCrossRefGoogle Scholar
  22. Katz BZ (2002) Update on chronic fatigue syndrome and Epstein-Barr virus. Pediatr Ann 31:741–744PubMedGoogle Scholar
  23. Kennedy G, Spence VA, McLaren M et al (2005) Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med 39:584–589PubMedCrossRefGoogle Scholar
  24. Koelle DM, Barcy S, Huang ML et al (2002) Markers of viral infection in monozygotic twins discordant for chronic fatigue syndrome. Clin Infect Dis 35:518–525PubMedCrossRefGoogle Scholar
  25. Kuratsune H, Yamaguti K, Takahashi M et al (1994) Acylcarnitine deficiency in chronic fatigue syndrome. Clin Infect Dis 18:S62–S67PubMedGoogle Scholar
  26. Lane RJ, Barrett MC, Woodrow D et al (1998) Muscle fibre characteristics and lactate responses to exercise in chronic fatigue syndrome. J Neurol Neurosurg Psychiatry 64:362–367PubMedGoogle Scholar
  27. Lanea RJM, Barrett MC, Taylor DJ et al (1998) Heterogeneity in chronic fatigue syndrome: evidence from magnetic resonance spectroscopy of muscle. Neuromuscul Disord 8:204–209CrossRefGoogle Scholar
  28. Lange G, DeLuca J, Maldjian JA et al (1999) Brain MRI abnormalities exist in a subset of patients with chronic fatigue syndrome. J Neurol Sci 171:3–7PubMedCrossRefGoogle Scholar
  29. Linde A, Andersson B, Svenson SB et al (1992) Serum levels of lymphokines and soluble cellular receptors in primary Epstein-Barr virus infection and in patients with chronic fatigue syndrome. J Infect Dis 165:994–1000PubMedGoogle Scholar
  30. Maher KJ, Klimas NG, Fletcher MA (2005) Chronic fatigue syndrome is associated with diminished intracellular perforin. Clin Exp Immunol 142:505–511PubMedGoogle Scholar
  31. Manuel y Keenoy B, Moorkens G, Vertommen J et al (2000) Magnesium status and parameters of the oxidant-antioxidant balance in patients with chronic fatigue: effects of supplementation with magnesium. J Am Coll Nutr 19:374–382PubMedGoogle Scholar
  32. Manuel y Keenoy B, Moorkens G, Vertommen J et al (2001) Antioxidant status and lipoprotein peroxidation in chronic fatigue syndrome. Life Sci 68:2037–2049PubMedCrossRefGoogle Scholar
  33. McCully KK, Natelson BH, Iotti S et al (1996) Reduced oxidative muscle metabolism in chronic fatigue syndrome. Muscle Nerve 19:621–625PubMedCrossRefGoogle Scholar
  34. McCully KK, Smith S, Rajaei S et al (2004) Muscle metabolism with blood flow restriction in chronic fatigue syndrome. J Appl Physiol 96:871–878PubMedCrossRefGoogle Scholar
  35. Mecocci P, Fanò G, Fulle S et al (1999) Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 26:303–308PubMedCrossRefGoogle Scholar
  36. Murrant CL, Barclay JK (1995) Endothelial cell products alter mammalian skeletal muscle function in vitro. Can J Physiol Pharmacol 73:736–741PubMedGoogle Scholar
  37. Nicolson GL, Gan R, Haier J (2003) Multiple co-infections (Mycoplasma, Chlamydia, human herpes virus-6) in blood of chronic fatigue syndrome patients: association with signs and symptoms. APMIS 111:557–566PubMedCrossRefGoogle Scholar
  38. Nijs J, Van de Velde B, De Meirleir K (2005) Pain in patients with chronic fatigue syndrome: Does nitric oxide trigger central sensitization? Med Hypotheses 64:558–562PubMedCrossRefGoogle Scholar
  39. Pall ML (2000) Elevated, sustained peroxynitrite levels as the cause of chronic fatigue syndrome. Med Hypotheses 54:115–125PubMedCrossRefGoogle Scholar
  40. Pall ML, Satterlee JD (2001) Elevated nitric oxide/peroxynitrite mechanism for the common etiology of multiple chemical sensitivity, chronic fatigue syndrome, and posttraumatic stress disorder. Ann N Y Acad Sci 933:323–329PubMedCrossRefGoogle Scholar
  41. Pessah IN, Kim KH, Feng W (2002) Redox sensing properties of the ryanodine receptor complex. Front Biosci 7:a72–79PubMedCrossRefGoogle Scholar
  42. Plioplys AV, Plioplys S (1995) Electron-microscopic investigation of muscle mitochondria in chronic fatigue syndrome. Neuropsychobiology 32:175–181PubMedCrossRefGoogle Scholar
  43. Prins JB, Van Der Meer JW, Bleijenberg G (2006) Chronic fatigue Syndrome. Lancet 367:346–55PubMedCrossRefGoogle Scholar
  44. Quan N, Herkenham M (2002) Connecting cytokines and brain: a review of current issues. Histol Histopathol 17:273–288PubMedGoogle Scholar
  45. Reeves WC, Lloyd A, Vernon SD et al. (2003) International Chronic Fatigue Syndrome Study Group. Identification of ambiguities in the 1994 chronic fatigue syndrome research case definition and recommendations for resolution. BMC Health Serv Res 3:25PubMedCrossRefGoogle Scholar
  46. Saggini R, Pizzigallo E, Vecchiet J et al (1998) Alteration of spatial-temporal parameters of gait in chronic fatigue syndrome patients. J Neurol Sci 154:18–25PubMedCrossRefGoogle Scholar
  47. Sakudo A, Kuratsune H, Kobayashi T et al (2006) Spectroscopic diagnosis of chronic fatigue syndrome by visible and near-infrared spectroscopy in serum samples. Biochem Biophys Res Commun 345(4):1513–1516PubMedCrossRefGoogle Scholar
  48. Sargent C, Scroop G, Nemeth P et al (2002) Maximal oxygen uptake and lactate metabolism are normal in chronic fatigue syndrome. Med Sci Sports Exerc 34:51–56PubMedGoogle Scholar
  49. Schillings ML, Kalkman JS, van der Werf SP et al (2004) Diminished central activation during maximal voluntary contraction in chronic fatigue syndrome. Clin Neurophysiol 115:2518–2524PubMedCrossRefGoogle Scholar
  50. Sen CK (2001) Antioxidant and redox regulation of cellular signaling: introduction. Med Sci Sports Exerc 33:368–370PubMedCrossRefGoogle Scholar
  51. Siemionow V, Fang Y, Calabrese L et al (2004) Altered central nervous system signal during motor performance in chronic fatigue syndrome. Clin Neurophysiol 115:2372–2381PubMedGoogle Scholar
  52. Smirnova IV, Pall ML (2003) Elevated levels of protein carbonyls in sera of chronic fatigue syndrome patients. Mol Cell Biochem 248:93–95PubMedCrossRefGoogle Scholar
  53. Smith WR, Noonan C, Buchwald D (2006) Mortality in a cohort of chronically fatigued patients. Psychol Med 36(9):1301–1306PubMedCrossRefGoogle Scholar
  54. Smith J, Fritz EL, Kerr JR et al (2005) Association of chronic fatigue syndrome with human leucocyte antigen class II alleles. J Clin Pathol 58:860–863PubMedCrossRefGoogle Scholar
  55. Steinberg JG, Mambrini O, Bregeon F et al (2005) Chronic fatigue syndrome: assessment of increased oxidative stress and altered muscle excitability in response to incremental exercise. J Intern Med 257:299–310PubMedCrossRefGoogle Scholar
  56. Sun J, Xu L, Eu JP et al (2001) Classes of thiols that influence the activity of the skeletal muscle calcium release channel. J Biol Chem 276:15625–15630PubMedCrossRefGoogle Scholar
  57. Vecchiet L, Montanari G, Pizzigallo E et al (1996) Sensory characterization of somatic parietal tissues in humans with chronic fatigue syndrome. Neurosci Lett 208:117–120PubMedCrossRefGoogle Scholar
  58. Whistler T, Jones JF, Unger ER et al (2005) Exercise responsive genes measured in peripheral blood of women with chronic fatigue syndrome and matched control subjects. BMC Physiol 5:5PubMedCrossRefGoogle Scholar
  59. Wong R, Lopaschuk G, Zhu G et al (1992) Skeletal muscle metabolism in the chronic fatigue syndrome. In vivo assessment by 31P nuclear magnetic resonance spectroscopy. Chest 102:1716–1722PubMedCrossRefGoogle Scholar
  60. Wyller VB (2007) The chronic fatigue syndrome- an update. Acta Neurol Scand Supp 187:7–14CrossRefGoogle Scholar
  61. Zammit PS, Heslop L, Hudon V et al (2002) Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res 281:39–49PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Stefania Fulle
    • 1
    • 2
    • 3
  • Tiziana Pietrangelo
    • 1
    • 2
    • 3
  • Rosa Mancinelli
    • 1
    • 2
    • 3
  • Raoul Saggini
    • 2
    • 3
  • Giorgio Fanò
    • 1
    • 2
    • 3
    Email author
  1. 1.Ce.S.I.—Center for Research on AgeingUniversità “G. d’Annunzio”Chieti-PescaraItaly
  2. 2.IIM—Interuniversitary Institute of MiologyUniversità “G. d’Annunzio”Chieti-PescaraItaly
  3. 3.Department of Basic and Applied Medical Science (B.A.M.S.)Università “G. d’Annunzio”Chieti-PescaraItaly

Personalised recommendations