Journal of Muscle Research and Cell Motility

, Volume 28, Issue 1, pp 79–87

The C. elegans dense body: anchoring and signaling structure of the muscle

  • Claire Lecroisey
  • Laurent Ségalat
  • Kathrin Gieseler
Review Paper


During evolution, both the architecture and the cellular physiology of muscles have been remarkably maintained. Striated muscles of invertebrates, although less complex, strongly resemble vertebrate skeletal muscles. In particular, the basic contractile unit called the sarcomere is almost identical between vertebrates and invertebrates. In vertebrate muscles, sarcomeric actin filaments are anchored to attachment points called Z-disks, which are linked to the extra-cellular matrix (ECM) by a muscle specific focal adhesion site called the costamere. In this review, we focus on the dense body of the animal model Caenorhabditis elegans. The C. elegans dense body is a structure that performs two in one roles at the same time, that of the Z-disk and of the costamere. The dense body is anchored in the muscle membrane and provides rigidity to the muscle by mechanically linking actin filaments to the ECM. In the last few years, it has become increasingly evident that, in addition to its structural role, the dense body also performs a signaling function in muscle cells. In this paper, we review recent advances in the understanding of the C. elegans dense body composition and function.


Striated muscle Caenorhabditis elegans Dense body Z-disk Costamere Focal adhesion sites Integrin signaling Titin Muscle LIM proteins 


  1. Barstead RJ, Kleiman L, Waterston RH (1991) Cloning, sequencing, and mapping of an alpha-actinin gene from the nematode Caenorhabditis elegans. Cell Motil Cytoskeleton 20:69–78PubMedCrossRefGoogle Scholar
  2. Barstead RJ, Waterston RH (1989) The basal component of the nematode dense-body is vinculin. J Biol Chem 264:10177–10185PubMedGoogle Scholar
  3. Barstead RJ, Waterston RH (1991) Vinculin is essential for muscle function in the nematode. J Cell Biol 114:715–724PubMedCrossRefGoogle Scholar
  4. Barsukov IL, Prescot A, Bate N, Patel B, Floyd DN, Bhanji N, Bagshaw CR, Letinic K, Di Paolo G, De Camilli P, Roberts GC, Critchley DR (2003) Phosphatidylinositol phosphate kinase type 1gamma and beta1-integrin cytoplasmic domain bind to the same region in the talin FERM domain. J Biol Chem 278:31202–31209PubMedCrossRefGoogle Scholar
  5. Broday L, Kolotuev I, Didier C, Bhoumik A, Podbilewicz B, Ronai Z (2004) The LIM domain protein UNC-95 is required for the assembly of muscle attachment structures and is regulated by the RING finger protein RNF-5 in C. elegans. J Cell Biol 165:857–867PubMedCrossRefGoogle Scholar
  6. C . elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology (1998) Science 282:2012–2018Google Scholar
  7. Calderwood DA, Yan B, de Pereda JM, Alvarez BG, Fujioka Y, Liddington RC, Ginsberg MH (2002) The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem 277:21749–21758PubMedCrossRefGoogle Scholar
  8. Calderwood DA, Zent R, Grant R, Rees DJ, Hynes RO, Ginsberg MH (1999) The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J Biol Chem 274:28071–28074PubMedCrossRefGoogle Scholar
  9. Chen HC, Appeddu PA, Parsons JT, Hildebrand JD, Schaller MD, Guan JL. (1995) Interaction of focal adhesion kinase with cytoskeletal protein talin. J Biol Chem 270:16995–16999PubMedCrossRefGoogle Scholar
  10. Chishti AH, Kim AC, Marfatia SM, Lutchman M, Hanspal M, Jindal H, Liu SC, Low PS, Rouleau GA, Mohandas N, Chasis JA, Conboy JG, Gascard P, Takakuwa Y, Huang SC, Benz EJ Jr, Bretscher A, Fehon RG, Gusella JF, Ramesh V, Solomon F, Marchesi VT, Tsukita S, Tsukita S, Hoover KB, et al (1998) The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 23:281–282PubMedCrossRefGoogle Scholar
  11. Cox EA, Hardin J (2004) Sticky worms: adhesion complexes in C. elegans. J Cell Sci 117:1885–1897PubMedCrossRefGoogle Scholar
  12. Cram EJ, Clark SG, Schwarzbauer JE. (2003) Talin loss-of-function uncovers roles in cell contractility and migration in C elegans. J Cell Sci 116:3871–3878PubMedCrossRefGoogle Scholar
  13. Crawford AW, Beckerle MC (1991) Purification and characterization of zyxin, an 82,000-dalton component of adherens junctions. J Biol Chem 266:5847–5853PubMedGoogle Scholar
  14. Crawford AW, Michelsen JW, Beckerle MC (1992) An interaction between zyxin and alpha-actinin. J Cell Biol 116:1381–1393PubMedCrossRefGoogle Scholar
  15. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S (1998) Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci USA 95:11211–11216PubMedCrossRefGoogle Scholar
  16. Didier C, Broday L, Bhoumik A, Israeli S, Takahashi S, Nakayama K, Thomas SM, Turner CE, Henderson S, Sabe H, Ronai Z (2003) RNF5, a RING finger protein that regulates cell motility by targeting paxillin ubiquitination and altered localization. Mol Cell Biol 23:5331–5345PubMedCrossRefGoogle Scholar
  17. Ervasti JM (2003) Costameres: the Achilles’ heel of Herculean muscle. J Biol Chem 278:13591–13594PubMedCrossRefGoogle Scholar
  18. Flaherty DB, Gernert KM, Shmeleva N, Tang X, Mercer KB, Borodovsky M, Benian GM (2002) Titins in C.elegans with unusual features: coiled-coil domains, novel regulation of kinase activity and two new possible elastic regions. J Mol Biol 323:533–549PubMedCrossRefGoogle Scholar
  19. Francis GR, Waterston RH (1985) Muscle organization in Caenorhabditis elegans: localization of proteins implicated in thin filament attachment and I-band organization. J Cell Biol 101:1532–1549PubMedCrossRefGoogle Scholar
  20. Gettner SN, Kenyon C, Reichardt LF (1995) Characterization of beta pat-3 heterodimers, a family of essential integrin receptors in C. elegans. J Cell Biol 129:1127–1141PubMedCrossRefGoogle Scholar
  21. Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino MG, G. Radeva J. Filmus, Bell JC, Dedhar S (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379:91–96PubMedCrossRefGoogle Scholar
  22. Hikita T, Qadota H, Tsuboi D, Taya S, Moerman DG, Kaibuchi K. (2005) Identification of a novel Cdc42 GEF that is localized to the PAT-3-mediated adhesive structure. Biochem Biophys Res Commun 335:139–145PubMedCrossRefGoogle Scholar
  23. Hobert O, Moerman DG, Clark KA, Beckerle MC, Ruvkun G (1999) A conserved LIM protein that affects muscular adherens junction integrity and mechanosensory function in Caenorhabditis elegans. J Cell Biol 144:45–57PubMedCrossRefGoogle Scholar
  24. Hobert O, Schilling JW, Beckerle MC, Ullrich A, Jallal B (1996) SH3 domain-dependent interaction of the proto-oncogene product Vav with the focal contact protein zyxin. Oncogene 12:1577–1581PubMedGoogle Scholar
  25. Horwitz A, Duggan K, Buck C, Beckerle MC, Burridge K (1986) Interaction of plasma membrane fibronectin receptor with talin-a transmembrane linkage. Nature 320:531–533PubMedCrossRefGoogle Scholar
  26. Hresko MC, Williams BD, Waterston RH (1994) Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans. J Cell Biol 124:491–506PubMedCrossRefGoogle Scholar
  27. Hynes R.O. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687PubMedCrossRefGoogle Scholar
  28. Kadrmas JL, Beckerle MC (2004) The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol 5:920–931PubMedCrossRefGoogle Scholar
  29. Krause M (1995) MyoD and myogenesis in C. elegans. Bioessays 17:219–228PubMedCrossRefGoogle Scholar
  30. Labouesse M, Georges-Labouesse E (2003) Cell adhesion: parallels between vertebrate and invertebrate focal adhesions. Curr Biol 13:R528–R530PubMedCrossRefGoogle Scholar
  31. Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edstrom L, Ehler E, Udd B, Gautel M (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308:1599–1603PubMedCrossRefGoogle Scholar
  32. Lee M, Cram EJ, Shen B, Schwarzbauer JE (2001) Roles for beta(pat-3) integrins in development and function of Caenorhabditis elegans muscles and gonads. J Biol Chem 276:36404–36410PubMedCrossRefGoogle Scholar
  33. Lin X, Qadota H, Moerman DG, Williams BD (2003) C elegans PAT-6/actopaxin plays a critical role in the assembly of integrin adhesion complexes in vivo. Curr Biol 13:922–932PubMedCrossRefGoogle Scholar
  34. Mackenzie JM Jr, Epstein HF (1980) Paramyosin is necessary for determination of nematode thick filament length in vivo. Cell 22:747–755PubMedCrossRefGoogle Scholar
  35. Mackenzie JM Jr, Garcea RL, Zengel JM, Epstein HF (1978) Muscle development in Caenorhabditis elegans: mutants exhibiting retarded sarcomere construction. Cell 15:751–762PubMedCrossRefGoogle Scholar
  36. Mackinnon AC, Qadota H, Norman KR, Moerman DG, Williams BD (2002) C. elegans PAT-4/ILK functions as an adaptor protein within integrin adhesion complexes. Curr Biol 12:787–797PubMedCrossRefGoogle Scholar
  37. McKeown CR, Han HF, Beckerle MC 2006. Molecular characterization of the Caenorhabditis elegans ALP/Enigma gene alp-1. Dev Dyn 235:530–538PubMedCrossRefGoogle Scholar
  38. Mercer KB, Flaherty DB, Miller RK, Qadota H, Tinley TL, Moerman DG, Benian GM (2003) Caenorhabditis elegans UNC-98, a C2H2 Zn finger protein, is a novel partner of UNC-97/PINCH in muscle adhesion complexes. Mol Biol Cell 14:2492–2507PubMedCrossRefGoogle Scholar
  39. Moerman DG, Fire A (1997) C. elegans II. Cold Spring Harbor Press, Cold Spring Harbor pp 417–470Google Scholar
  40. Moerman DG, Williams BD (2006) Sarcomere assembly in C. elegans muscle (January 16, 2006), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.81.1, http://www.wormbook.orgGoogle Scholar
  41. Moulder GL, Huang MM, Waterston RH, Barstead RJ (1996) Talin requires beta-integrin, but not vinculin, for its assembly into focal adhesion-like structures in the nematode Caenorhabditis elegans. Mol Biol Cell 7:1181–1193PubMedGoogle Scholar
  42. Nix DA, Beckerle MC (1997) Nuclear-cytoplasmic shuttling of the focal contact protein, zyxin: a potential mechanism for communication between sites of cell adhesion and the nucleus. J Cell Biol 138:1139–1147PubMedCrossRefGoogle Scholar
  43. Pashmforoush M, Pomies P, Peterson KL, Kubalak S, Ross J Jr, Hefti A, Aebi U, Beckerle MC, Chien KR (2001) Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat Med 7:591–597PubMedCrossRefGoogle Scholar
  44. Price LS, Leng J, Schwartz MA, Bokoch GM (1998) Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol Biol Cell 9:1863–1871PubMedGoogle Scholar
  45. Pyle WG, Solaro RJ (2004) At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res 94:296–305PubMedCrossRefGoogle Scholar
  46. Ren XD, Kiosses WB, Schwartz MA (1999) Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. Embo J 18:578–585PubMedCrossRefGoogle Scholar
  47. Rogalski TM, Mullen GP, Gilbert MM, Williams BD, Moerman DG (2000). The UNC-112 gene in Caenorhabditis elegans encodes a novel component of cell-matrix adhesion structures required for integrin localization in the muscle cell membrane. J Cell Biol 150:253–264PubMedCrossRefGoogle Scholar
  48. Samarel AM (2005) Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol 289:H2291–H2301PubMedCrossRefGoogle Scholar
  49. Schmeichel KL, Beckerle MC (1994) The LIM domain is a modular protein-binding interface. Cell 79:211–219PubMedCrossRefGoogle Scholar
  50. Schmeichel KL, Beckerle MC (1997) Molecular dissection of a LIM domain. Mol Biol Cell 8:219–230PubMedGoogle Scholar
  51. Smith P, Leung-Chiu WM, Montgomery R, Orsborn A, Kuznicki K, Gressman-Coberly E, Mutapcic L, Bennett K (2002) The GLH proteins, Caenorhabditis elegans P granule components, associate with CSN-5 and KGB-1, proteins necessary for fertility, and with ZYX-1, a predicted cytoskeletal protein. Dev Biol 251:333–347PubMedCrossRefGoogle Scholar
  52. Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, Perles Z, Sinagra G, Lin JH, Vu TM, Zhou Q, Bowles KR, Di Lenarda A, Schimmenti L, Fox M, Chrisco MA, Murphy RT, McKenna W, Elliott P, Bowles NE, Chen J, Valle G, Towbin JA (2003) Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol 42:2014–2027PubMedCrossRefGoogle Scholar
  53. Wang Y, Gilmore TD (2003) Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear. Biochim Biophys Acta 1593:115–120PubMedCrossRefGoogle Scholar
  54. Wick M, Burger C, Brusselbach S, Lucibello FC, Muller R (1994) A novel member of human tissue inhibitor of metalloproteinases (TIMP) gene family is regulated during G1 progression, mitogenic stimulation, differentiation, and senescence. J Biol Chem 269:18953–18960PubMedGoogle Scholar
  55. Williams BD, Waterston RH (1994) Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J Cell Biol 124:475–490PubMedCrossRefGoogle Scholar
  56. Woods AJ, Roberts MS, Choudhary J, Barry ST, Mazaki Y, Sabe H, Morley SJ, Critchley DR, Norman JC (2002) Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells. J Biol Chem 277:6428–6437PubMedCrossRefGoogle Scholar
  57. Wu C, Dedhar S (2001) Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 155:505–510PubMedCrossRefGoogle Scholar
  58. Zengel JM, Epstein HF (1980) Identification of genetic elements associated with muscle structure in the nematode Caenorhabditis elegans. Cell Motil 1:73–97PubMedCrossRefGoogle Scholar
  59. Zhang Y, Chen K, Guo L, Wu C (2002) Characterization of PINCH-2, a new focal adhesion protein that regulates the PINCH-1-ILK interaction, cell spreading, and migration. J Biol Chem 277:38328–38338PubMedCrossRefGoogle Scholar
  60. Zhou Q, Chu PH, Huang C, Cheng CF, Martone ME, Knoll G, Shelton GD, Evans S, Chen J (2001) Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J Cell Biol 155:605–612PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Claire Lecroisey
    • 1
    • 2
  • Laurent Ségalat
    • 1
    • 2
  • Kathrin Gieseler
    • 1
    • 2
  1. 1.Université Lyon 1LyonFrance
  2. 2.CNRS, UMR5534, Centre de génétique moléculaire et cellulaireVilleurbanneFrance

Personalised recommendations