New insights in the regulation of calcium transfers by muscle dystrophin-based cytoskeleton: implications in DMD

  • Bruno Constantin
  • Stéphane Sebille
  • Christian Cognard
ORIGINAL PAPER

Abstract

Calcium mishandling in Duchenne muscular dystrophy (DMD) suggested that dystrophin, a membrane-associated cytoskeleton protein, may regulate calcium-signalling cascades such as calcium entries. Calcium overload in human DMD myotubes is dependent on their contractile activity suggesting the involvement of channels being activated during contraction and/or calcium release. Forced expression of mini-dystrophin in dystrophin-deficient myotubes, reactivates appropriate sarcolemmal expression of dystrophin-associated proteins and restores normal calcium handling in the cytosol. Furthermore, the recombinant mini-dystrophin reduced the store-operated calcium influx across the sarcolemma, and the mitochondrial calcium uptake during this influx. A slow component of calcium release dependent on IP3R, as well as the production of IP3, were also reduced to normal levels by expression of mini-dystrophin. Our studies provide a new model for the convergent regulation of transmembrane calcium influx and IP3-dependent calcium release by the dystrophin-based cytoskeleton (DBC). We also suggest molecular association of such channels with DBC which may provide the scaffold for assembling a multiprotein-signalling complex that modulates the channel activity. This suggests that the loss of this molecular association could participate in the alteration of calcium homeostasis observed in DMD muscle cells.

Keywords

Skeletal muscle Duchenne muscular dystrophy Dystrophine Calcium signalling Stone-operated calcium entries Inositol [1,3,5] triphosphate receptor Mitochondrial calcium uptake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovici H, Hogan AB, Obagi C, Topham MK, Gee SH (2003) Diacylglycerol kinase-zeta localization in skeletal muscle is regulated by phosphorylation and interaction with syntrophins. Mol Biol Cell 14:4499–4511PubMedCrossRefGoogle Scholar
  2. Alderton JM, Steinhardt RA (2000) Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. J␣Biol Chem 275:9452–9460PubMedCrossRefGoogle Scholar
  3. Araya R, Liberona JL, Cardenas JC, Riveros N, Estrada M, Powell JA, Carrasco MA, Jaimovich E (2003) Dihydropyridine receptors as voltage sensors for a depolarization-evoked, IP3R-mediated, slow calcium signal in skeletal muscle cells. J Gen Physiol 121:3–16PubMedCrossRefGoogle Scholar
  4. Arnaudeau S, Kelley WL, Walsh JV Jr, Demaurex N (2001) Mitochondria recycle Ca(2+) to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem 276:29430–29439PubMedCrossRefGoogle Scholar
  5. Bakker AJ, Head SI, Williams DA, Stephenson DG (1993) Ca2+ levels in myotubes grown from the skeletal muscle of dystrophic (mdx) and normal mice. J Physiol 460:1–13PubMedGoogle Scholar
  6. Balghi H, Sebille S, Constantin B, Patri S, Thoreau V, Mondin L, Mok E, Kitzis A, Raymond G, Cognard C (2006) Mini-dystrophin expression down-regulates overactivation of G protein-mediated IP3 signalling pathway in dystrophin-deficient muscle cells. J Gen Physiol 127:171–182PubMedCrossRefGoogle Scholar
  7. Basset O, Boittin FX, Cognard C, Constantin B, Ruegg UT (2006) Bcl-2 overexpression prevents calcium overload and subsequent apoptosis in dystrophic myotubes. Biochem J 395:267–276PubMedCrossRefGoogle Scholar
  8. Batchelor CL, Winder SJ (2006) Sparks, signals and shock absorbers: how dystrophin loss causes muscular dystrophy. Trends Cell Biol 16:198–205PubMedCrossRefGoogle Scholar
  9. Behrens L, Bender A, Johnson MA, Hohlfeld R (1997) Cytotoxic mechanisms in inflammatory myopathies. Co-expression of Fas and protective Bcl-2 in muscle fibres and inflammatory cells. Brain 120 (Pt 6):929–938PubMedCrossRefGoogle Scholar
  10. Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Physiol 499 (Pt 2):291–306PubMedGoogle Scholar
  11. Bertorini TE, Bhattacharya SK, Palmieri GM, Chesney CM, Pifer D, Baker B (1982) Muscle calcium and magnesium content in Duchenne muscular dystrophy. Neurology 32:1088–1092PubMedGoogle Scholar
  12. Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329PubMedGoogle Scholar
  13. Bodensteiner JB, Engel AG (1978) Intracellular calcium accumulation in Duchenne dystrophy and other myopathies: a study of 567,000 muscle fibers in 114 biopsies. Neurology 28:439–446PubMedGoogle Scholar
  14. Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82:743–752PubMedCrossRefGoogle Scholar
  15. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84:757–767PubMedCrossRefGoogle Scholar
  16. Bulfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81:1189–1192PubMedCrossRefADSGoogle Scholar
  17. Carrasco MA, Figueroa S (1995) Inositol 1,4,5-trisphosphate 3-kinase activity in frog skeletal muscle. Comp Biochem Physiol B Biochem Mol Biol 110:747–753PubMedCrossRefGoogle Scholar
  18. Challet C, Maechler P, Wollheim CB, Ruegg UT (2001) Mitochondrial calcium oscillations in C2C12 myotubes. J Biol Chem 276:3791–3797PubMedCrossRefGoogle Scholar
  19. Collet C, Allard B, Tourneur Y, Jacquemond V (1999) Intracellular calcium signals measured with indo-1 in isolated skeletal muscle fibres from control and mdx mice. J Physiol 520(Pt 2):417–429PubMedCrossRefGoogle Scholar
  20. Culligan K, Banville N, Dowling P, Ohlendieck K (2002) Drastic reduction of calsequestrin-like proteins and impaired calcium binding in dystrophic mdx muscle. J Appl Physiol 92:435–445PubMedGoogle Scholar
  21. Deconinck N, Ragot T, Marechal G, Perricaudet M, Gillis JM (1996) Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. Proc Natl Acad Sci USA 93:3570–3574PubMedCrossRefADSGoogle Scholar
  22. Decrouy A, Renaud JM, Davis HL, Lunde JA, Dickson G, Jasmin BJ (1997) Mini-dystrophin gene transfer in mdx4cv diaphragm muscle fibers increases sarcolemmal stability. Gene Ther 4:401–408PubMedCrossRefGoogle Scholar
  23. Decrouy A, Renaud JM, Lunde JA, Dickson G, Jasmin BJ (1998) Mini- and full-length dystrophin gene transfer induces the recovery of nitric oxide synthase at the sarcolemma of mdx4cv skeletal muscle fibers. Gene Ther 5:59–64PubMedCrossRefGoogle Scholar
  24. Denetclaw WF Jr, Hopf FW, Cox GA, Chamberlain JS, Steinhardt RA (1994) Myotubes from transgenic mdx mice expressing full-length dystrophin show normal calcium regulation. Mol Biol Cell 5:1159–1167PubMedGoogle Scholar
  25. Deval E, Levitsky DO, Marchand E, Cantereau A, Raymond G, Cognard C (2002) Na(+)/Ca(2+) exchange in human myotubes: intracellular calcium rises in response to external sodium depletion are enhanced in DMD. Neuromuscul Disord 12:665–673PubMedCrossRefGoogle Scholar
  26. Ervasti JM, Campbell KP (1993) A role for the dystrophin– glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122:809–823PubMedCrossRefGoogle Scholar
  27. Franco A Jr, Lansman JB (1990) Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344:670–673PubMedCrossRefADSGoogle Scholar
  28. Friedrich O, Both M, Gillis JM, Chamberlain JS, Fink RH (2004) Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice. J Physiol 555:251–265PubMedCrossRefGoogle Scholar
  29. Gailly P, Boland B, Himpens B, Casteels R, Gillis JM (1993) Critical evaluation of cytosolic calcium determination in resting muscle fibres from normal and dystrophic (mdx) mice. Cell Calcium 14:473–483PubMedCrossRefGoogle Scholar
  30. Gilabert JA, Parekh AB (2000) Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca(2+) current I(CRAC). EMBO J 19:6401–6407PubMedCrossRefGoogle Scholar
  31. Gillis JM (1999) Understanding dystrophinopathies: an inventory of the structural and functional consequences of the absence of dystrophin in muscles of the mdx mouse. J␣Muscle Res Cell Motil 20:605–625PubMedCrossRefGoogle Scholar
  32. Grounds MD, Torrisi J (2004) Anti-TNFalpha (Remicade) therapy protects dystrophic skeletal muscle from necrosis. FASEB J 18:676–682PubMedCrossRefGoogle Scholar
  33. Grozdanovic Z, Gosztonyi G, Gossrau R (1996) Nitric oxide synthase I (NOS-I) is deficient in the sarcolemma of striated muscle fibers in patients with Duchenne muscular dystrophy, suggesting an association with dystrophin. Acta Histochem 98:61–69PubMedGoogle Scholar
  34. Guo WX, Nichol M, Merlie JP (1996) Cloning and expression of full length mouse utrophin: the differential association of␣utrophin and dystrophin with AChR clusters. FEBS Lett 398:259–264PubMedCrossRefGoogle Scholar
  35. Head SI (1993) Membrane potential, resting calcium and calcium transients in isolated muscle fibres from normal and dystrophic mice. J Physiol 469:11–19PubMedGoogle Scholar
  36. Hopf FW, Reddy P, Hong J, Steinhardt RA (1996) A capacitative calcium current in cultured skeletal muscle cells is mediated by the calcium-specific leak channel and inhibited by dihydropyridine compounds. J Biol Chem 271:22358–22367PubMedCrossRefGoogle Scholar
  37. Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signalling in T lymphocytes. J Cell Biol 137:633–648PubMedCrossRefGoogle Scholar
  38. Imbert N, Cognard C, Duport G, Guillou C, Raymond G (1995) Abnormal calcium homeostasis in Duchenne muscular dystrophy myotubes contracting in vitro. Cell Calcium 18:177–186PubMedCrossRefGoogle Scholar
  39. Imbert N, Vandebrouck C, Constantin B, Duport G, Guillou C, Cognard C, Raymond G (1996) Hypoosmotic shocks induce elevation of resting calcium level in Duchenne muscular dystrophy myotubes contracting in vitro. Neuromuscular Discord 6:351–360CrossRefGoogle Scholar
  40. Imbert N, Vandebrouck C, Duport G, Raymond G, Hassoni AA, Constantin B, Cullen MJ, Cognard C (2001) Calcium currents and transients in co-cultured contracting normal and Duchenne muscular dystrophy human myotubes. J␣Physiol 534:343–355PubMedCrossRefGoogle Scholar
  41. Jackson MJ, Jones DA, Edwards RH (1985) Measurements of calcium and other elements in muscle biopsy samples from patients with Duchenne muscular dystrophy. Clin Chim Acta 147:215–221PubMedCrossRefGoogle Scholar
  42. Johnson BD, Scheuer T, Catterall WA (2005) Convergent regulation of skeletal muscle Ca2+ channels by dystrophin, the actin cytoskeleton, and cAMP-dependent protein kinase. Proc Natl Acad Sci USA 102:4191–4196PubMedCrossRefADSGoogle Scholar
  43. Kurebayashi N, Ogawa Y (2001) Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J Physiol 533:185–199PubMedCrossRefGoogle Scholar
  44. Liberona JL, Powell JA, Shenoi S, Petherbridge L, Caviedes R, Jaimovich E (1998) Differences in both inositol 1,4,5- trisphosphate mass and inositol 1,4,5-trisphosphate receptors between normal and dystrophic skeletal muscle cell lines. Muscle Nerve 21:902–909PubMedCrossRefGoogle Scholar
  45. Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003) Sustained Ca2+ transfer across mitochondria is essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278:44769–44779PubMedCrossRefGoogle Scholar
  46. Mallouk N, Jacquemond V, Allard B (2000) Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc Natl Acad Sci USA 97:4950–4955PubMedCrossRefADSGoogle Scholar
  47. Marchand E, Constantin B, Vandebrouck C, Raymond G, Cognard C (2001) Calcium homeostasis and cell death in Sol8 dystrophin-deficient cell line in culture. Cell Calcium 29:85–96PubMedCrossRefGoogle Scholar
  48. Marchand E, Constantin B, Balghi H, Claudepierre MC, Cantereau A, Magaud C, Mouzou A, Raymond G, Braun S, Cognard C (2004) Improvement of calcium handling and changes in calcium-release properties after mini- or full-length dystrophin forced expression in cultured skeletal myotubes. Exp Cell Res 297:363–379PubMedCrossRefGoogle Scholar
  49. McCarter GC, Denetclaw WF Jr, Reddy P, Steinhardt RA (1997) Lipofection of a cDNA plasmid containing the dystrophin gene lowers intracellular free calcium and calcium leak channel activity in mdx myotubes. Gene Ther 4:483–487PubMedCrossRefGoogle Scholar
  50. Menke A, Jockusch H (1995) Extent of shock-induced membrane leakage in human and mouse myotubes depends on dystrophin. J Cell Sci 108(Pt 2):727–733PubMedGoogle Scholar
  51. Messina S, Bitto A, Aguennouz M, Minutoli L, Monici MC, Altavilla D, Squadrito F, Vita G (2006) Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol 198:234–241PubMedCrossRefGoogle Scholar
  52. Mokri B, Engel AG (1975) Duchenne dystrophy: electron microscopic findings pointing to a basic or early abnormality in the plasma membrane of the muscle fiber. Neurology 25:1111–1120PubMedGoogle Scholar
  53. Morizumi H, Hizawa K, Nunomura S, Ii K (1984) Comparative study of alterations of skeletal muscle in Duchenne muscular dystrophy and polymyositis. Acta Pathol Jpn 34:1221–1242PubMedGoogle Scholar
  54. Ou Y, Strege P, Miller SM, Makielski J, Ackerman M, Gibbons SJ, Farrugia G (2003) Syntrophin gamma 2 regulates SCN5A gating by a PDZ domain-mediated interaction. J␣Biol Chem 278:1915–1923PubMedCrossRefGoogle Scholar
  55. Pan Z, Yang D, Nagaraj RY, Nosek TA, Nishi M, Takeshima H, Cheng H, Ma J (2002) Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat Cell Biol 4:379–383PubMedCrossRefGoogle Scholar
  56. Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38:233–252PubMedCrossRefGoogle Scholar
  57. Peterson ER, Masurovsky EB, Spiro AJ, Crain SM (1986) Duchenne dystrophic muscle develops lesions in long-term coculture with mouse spinal cord. Muscle Nerve 9:787–808PubMedCrossRefGoogle Scholar
  58. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 90:3710–3714PubMedCrossRefADSGoogle Scholar
  59. Phelps SF, Hauser MA, Cole NM, Rafael JA, Hinkle RT, Faulkner JA, Chamberlain JS (1995) Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 4:1251–1258PubMedGoogle Scholar
  60. Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Guo W, Andrade FH (2002) A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 11:263–272PubMedCrossRefGoogle Scholar
  61. Powell JA, Carrasco MA, Adams DS, Drouet B, Rios J, Muller M, Estrada M, Jaimovich E (2001) IP(3) receptor function and localization in myotubes: an unexplored Ca(2+) signalling pathway in skeletal muscle. J Cell Sci 114:3673–3683PubMedGoogle Scholar
  62. Pressmar J, Brinkmeier H, Seewald MJ, Naumann T, Rudel R (1994) Intracellular Ca2+ concentrations are not elevated in resting cultured muscle from Duchenne (DMD) patients and in MDX mouse muscle fibres. Pflugers Arch 426:499–505PubMedCrossRefGoogle Scholar
  63. Rivet-Bastide M, Imbert N, Cognard C, Duport G, Rideau Y, Raymond G (1993) Changes in cytosolic resting ionized calcium level and in calcium transients during in vitro development of normal and Duchenne muscular dystrophy cultured skeletal muscle measured by laser cytofluorimetry using indo-1. Cell Calcium 14:563–571PubMedCrossRefGoogle Scholar
  64. Robert V, Massimino ML, Tosello V, Marsault R, Cantini M, Sorrentino V, Pozzan T (2001) Alteration in calcium handling at the subcellular level in mdx myotubes. J Biol Chem 276:4647–4651PubMedCrossRefGoogle Scholar
  65. Tidball JG, Albrecht DE, Lokensgard BE, Spencer MJ (1995) Apoptosis precedes necrosis of dystrophin-deficient muscle. J Cell Sci 108(Pt 6):2197–2204PubMedGoogle Scholar
  66. Turner PR, Fong PY, Denetclaw WF, Steinhardt RA (1991) Increased calcium influx in dystrophic muscle. J Cell Biol 115:1701–1712PubMedCrossRefGoogle Scholar
  67. Turner PR, Westwood T, Regen CM, Steinhardt RA (1988) Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 335:735–738PubMedCrossRefADSGoogle Scholar
  68. Tutdibi O, Brinkmeier H, Rudel R, Fohr KJ (1999) Increased calcium entry into dystrophin-deficient muscle fibres of MDX and ADR-MDX mice is reduced by ion channel blockers. J Physiol 515(Pt 3):859–868PubMedCrossRefGoogle Scholar
  69. Vandebrouck C, Duport G, Cognard C, Raymond G (2001) Cationic channels in normal and dystrophic human myotubes. Neuromuscul Disord 11:72–79PubMedCrossRefGoogle Scholar
  70. Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158:1089–1096PubMedCrossRefGoogle Scholar
  71. Vandebrouck A, Ducret T, Basset O, Sebille S, Raymond G, Ruegg U, Gailly P, Cognard C, Constantin B (2005) Regulation of store-operated calcium entries and mitochondrial uptake by minidystrophin expression in cultured myotubes. FASEB J Epub 2005 Oct 27. short printed version 20: 136–138Google Scholar
  72. Wells DJ, Wells KE, Asante EA, Turner G, Sunada Y, Campbell KP, Walsh FS, Dickson G (1995) Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 4:1245–1250PubMedGoogle Scholar
  73. Woods CE, Novo D, DiFranco M, Capote J, Vergara JL (2005) Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres. J Physiol 568:867–880PubMedCrossRefGoogle Scholar
  74. Yeung EW, Whitehead NP, Suchyna TM, Gottlieb PA, Sachs F, Allen DG (2005) Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J␣Physiol 562:367–380PubMedCrossRefGoogle Scholar
  75. Zhou YW, Oak SA, Senogles SE, Jarrett HW (2005) Laminin-alpha1 globular domains 3 and 4 induce heterotrimeric G protein binding to alpha-syntrophin’s PDZ domain and alter intracellular Ca2+ in muscle. Am J Physiol Cell Physiol 288:C377–C388PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Bruno Constantin
    • 1
  • Stéphane Sebille
    • 1
  • Christian Cognard
    • 1
  1. 1.Institut de Physiologie et Biologie Cellulaires, CNRS, UMR-6187University of PoitiersPoitiersFrance

Personalised recommendations