Advertisement

Blocking of Striated Muscle Degeneration by Serotonin in C. elegans

  • Maité Carre-Pierrat
  • Marie-Christine Mariol
  • Lucie Chambonnier
  • Aurélie Laugraud
  • Fabienne Heskia
  • Jean Giacomotto
  • Laurent SégalatEmail author
Original Paper

Abstract

Prevention of muscle fiber degeneration is a key issue in the treatment of muscular dystrophies such as Duchenne Muscular Dystrophy (DMD). It is widely postulated that existing pharmaceutical compounds might potentially be beneficial to DMD patients, but tools to identify them are lacking. Here, by using a Caenorhabditis elegans model of dystrophin-dependent muscular dystrophy, we show that the neurohormone serotonin and some of its agonists are potent suppressors of muscle degeneration. Inhibitors of serotonin reuptake transporters, which prolong the action of endogenous serotonin, have a similar effect. Moreover, reduction of serotonin levels leads to degeneration of non-dystrophic muscles. Our results demonstrate that serotonin is critical to C. elegans striated muscles. These findings reveal a new fonction of serotonin in striated muscles.

Keywords

Serotonin C. elegans Muscular dystrophy Striated muscles Dystrophin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank Theresa Stiernagle and the Caenorhabditis Genetics Center (CGC) for providing strains used in this study. This work was supported by the Association Française contre les Myopathies (AFM), by the french ministry of Research, and by a district (Région Rhône-Alpes) grant to L.S.

References

  1. Ahn AH, Kunkel LM (1993) The structural and functional diversity of dystrophin. Nat Genet 3:283–291PubMedCrossRefGoogle Scholar
  2. Bessou C, Giugia J-B, Franks CJ, Holden-Dye L et al (1998) Mutations in the Caenorhabditis elegans dystrophin-like gene dys-1 lead to hyperactivity and suggest a link with cholinergic transmission. Neurogenetics 2:61–72PubMedCrossRefGoogle Scholar
  3. Blake D, Weir A, Newey S, Davies K (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329PubMedGoogle Scholar
  4. Brenman J, Chao D, Xia H, Aldape K et al (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82:743–752PubMedCrossRefGoogle Scholar
  5. Chao MY, Komatsu H, Fukuto HS, Dionne HM et al (2004) Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc Natl Acad Sci USA 101:15512–15517PubMedCrossRefGoogle Scholar
  6. Dempsey CM, Mackenzie SM, Gargus A, Blanco G et al (2005) Serotonin (5HT), fluoxetine, imipramine and dopamine target distinct 5HT receptor signaling to modulate Caenorhabditis elegans egg-laying behavior. Genetics 169:1425–1436PubMedCrossRefGoogle Scholar
  7. Dubowitz V (2000) What is muscular dystrophy? Forty years of progressive ignorance. J R Coll Physicians Lond 34:464–468PubMedGoogle Scholar
  8. Gaud A, Simon J, Witzel T, Carre-Pierrat M et al (2004) Prednisone reduces muscle degeneration in dystrophin-deficient Caenorhabditis elegans. Neuromuscul Disord 14:365–370PubMedCrossRefGoogle Scholar
  9. Gieseler K, Grisoni K, Ségalat L (2000) Genetic suppression of phenotypes arising from mutations in dystrophin-related genes in Caenorhabditis elegans. Curr Biol 10:1092–1097PubMedCrossRefGoogle Scholar
  10. Grisoni K, Gieseler K, Mariol M, Martin E et al (2003) The stn-1 syntrophin gene of C. elegans is functionally related to dystrophin and dystrobrevin. J Mol Biol 332:1037–1046PubMedCrossRefGoogle Scholar
  11. Hajduch E, Dombrowski L, Darakhshan F, Rencurel F et al (1999) Biochemical localisation of the 5-HT2A (serotonin) receptor in rat skeletal muscle. Biochem Biophys Res Commun 257:369–372PubMedCrossRefGoogle Scholar
  12. Hamdan F, Ungrin M, Abramovitz M, Ribeiro P (1999) Characterization of a novel serotonin receptor from Caenorhabditis elegans: cloning and expression of two splice variants. J Neurochem 72:1372–1383PubMedCrossRefGoogle Scholar
  13. Hobson R, Geng J, Gray A, Komuniecki R (2003) SER-7b, a constitutively active Galphas coupled 5-HT7-like receptor expressed in the Caenorhabditis elegans M4 pharyngeal motorneuron. J Neurochem 87:22–29PubMedCrossRefGoogle Scholar
  14. Horvitz H, Chalfie M, Trent C, Sulston J et al (1982) Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216:1012–1014PubMedGoogle Scholar
  15. Khurana T, Davies K (2003) Pharmacological strategies for muscular dystrophy. Nat Rev Drug Discov 2:379–390PubMedCrossRefGoogle Scholar
  16. Koenig M, Hoffman EP, Bertelson CJ, Monaco AP et al (1987) Complete cloning of the Duchenne muscular dystrophy cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509– 517PubMedCrossRefGoogle Scholar
  17. Lauder J, Wilkie M, Wu C, Singh S (2000) Expression of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors in the mouse embryo. Int J Dev Neurosci 18:653–662PubMedCrossRefGoogle Scholar
  18. Mariol MC, Segalat L (2001) Muscular degeneration in the absence of dystrophin is a calcium-dependent process. Curr Biol 11:1691–1694PubMedCrossRefGoogle Scholar
  19. Mendell J, Silverman L, Verrill H, Parker J et al (1976) Imipramine–serotonin induced myopathy. Neurology 26:968–974PubMedGoogle Scholar
  20. Miller D, Ortiz I, Berliner G, Epstein H (1983) Differential localization of two myosins within nematode thick filaments. Cell 34:477–490PubMedCrossRefGoogle Scholar
  21. Olde B, McCombie W (1997) Molecular cloning and functional expression of a serotonin receptor from Caenorhabditis elegans. J Mol Neurosci 8:53–62PubMedGoogle Scholar
  22. Ranganathan R, Cannon S, Horvitz H (2000) MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature 408:470–475PubMedCrossRefGoogle Scholar
  23. Sze J, Victor M, Loer C, Shi Y et al (2000) Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403:560–564PubMedCrossRefGoogle Scholar
  24. Ségalat L, Elkes DA, Kaplan JM (1995) Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans [see comments]. Science 267:1648–1651PubMedGoogle Scholar
  25. Waterston RH (1988) Muscle. In: Wood WB (eds) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  26. Waterston RH, Hirsh D, Lane TR (1984) Dominant mutations affecting muscle structure in Caenorhabditis elegans that map near the actin gene cluster. J Mol Biol 180:473–496PubMedCrossRefGoogle Scholar
  27. Yamada J, Sugimoto Y, Horisaka K (1983) Simultaneous determination of tryptophan and its metabolites in mouse brain by high-performance liquid chromatography with fluorometric detection. Anal Biochem 129:460–463PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Maité Carre-Pierrat
    • 1
  • Marie-Christine Mariol
    • 1
  • Lucie Chambonnier
    • 1
  • Aurélie Laugraud
    • 1
  • Fabienne Heskia
    • 1
  • Jean Giacomotto
    • 1
  • Laurent Ségalat
    • 1
    Email author
  1. 1.CGMC, CNRS-UMR 5534Université Lyon 1Villeurbanne CedexFrance

Personalised recommendations