Functional and biophysical analyses of the class XIV Toxoplasma gondii Myosin D

  • ANGELIKA HERM-GÖTZ
  • FRÊDÊRIC DELBAC
  • STEFAN WEISS
  • MIKLOS NYITRAI
  • ROLF STRATMANN
  • STANISLAS TOMAVO
  • L. DAVID SIBLEY
  • MICHAEL A. GEEVES
  • DOMINIQUE SOLDATI
Article

Summary

The obligate intracellular parasite Toxoplasma gondii uses gliding motility to migrate across the biological barriers of the host and to invade cells. This unique form of locomotion requires an intact actin cytoskeleton and involves at least one motor protein (TgMyoA) that belongs to the class XIV of the myosin superfamily. TgMyoA is anchored in the inner membrane complex and is essential for the gliding motion, host cell invasion and egress of T. gondii tachyzoites. TgMyoD is the smallest T. gondii myosin and is structurally very closely related to TgMyoA. We show here that TgMyoD exhibits similar transient kinetic properties as the fast single-headed TgMyoA. To determine if TgMyoD also contributes to parasite gliding motility, the TgMyoD gene was disrupted by double homologous recombination. In contrast to TgMyoA, TgMyoD gene is dispensable for tachyzoite propagation and motility. Parasites lacking TgMyoD glide normally and their virulence is not compromised in mice. The fact that TgMyoD is predominantly expressed in bradyzoites explains the absence of a phenotype observed with myodko in tachyzoites and does not exclude a role of this motor in gliding that would be restricted to the cyst forming but nevertheless motile stage of the parasite.

Abbreviations

BDM

butanedione monoxime

mant ATP

N-methylanthraniloyl derivatives of 2′deoxy-ATP

References

  1. Bergman LW, Kaiser K, Fujioka H, Coppens I, Daly TM, Fox S, Matuschewski K, Nussenzweig V and Kappe SH (2003) Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites. J Cell Sci 116(Pt 1): 39–49PubMedCrossRefGoogle Scholar
  2. Carruthers VB and Sibley LD (1997) Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol 73(2): 114–123PubMedGoogle Scholar
  3. Cremo CR and Geeves MA (1998) Interaction of actin and ADP with the head domain of smooth muscle myosin: implications for strain-dependent ADP release in smooth muscle. Biochemistry 37: 1969–1978PubMedCrossRefGoogle Scholar
  4. Delbac F, Sanger A, Neuhaus EM, Stratmann R, Ajioka JW, Toursel C, Herm-Gotz A, Tomavo S, Soldati T and Soldati D (2001) Toxoplasma gondii myosins B/C: one gene, two tails, two localizations, and a role in parasite division. J Cell Biol 155(4): 613–623PubMedCrossRefGoogle Scholar
  5. Dobrowolski J and Sibley LD (1997) The role of the cytoskeleton in host cell invasion by Toxoplasma gondii. Behring Inst Mitt 99: 90–96PubMedGoogle Scholar
  6. Dobrowolski JM, Carruthers VB and Sibley LD (1997) Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol Microbiol 26(1): 163–173PubMedCrossRefGoogle Scholar
  7. Dobrowolski JM and Sibley LD (1996) Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84(6): 933–939PubMedCrossRefGoogle Scholar
  8. Donald R, Carter D, Ullman B and Roos DS (1996) Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. Use as a selectable marker for stable transformation. J Biol Chem 271(24): 14010–14019PubMedCrossRefGoogle Scholar
  9. Gaskins E, Gilk S, DeVore N, Mann T, Ward G and Beckers C (2004) Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J Cell Biol 165(3): 383–393PubMedCrossRefGoogle Scholar
  10. Geeves MA and K.C. H. (1999). Structural mechanism of muscle contraction. Ann Rev Biochem 68: 687–728PubMedCrossRefGoogle Scholar
  11. Hakansson S, Morisaki H, Heuser J and Sibley LD (1999) Time-lapse video microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic mechanism of cell locomotion. Mol Biol Cell 10(11): 3539–3547PubMedGoogle Scholar
  12. Heintzelman MB and Schwartzman JD (1997) A novel class of unconventional myosins from Toxoplasma gondii. J Mol Biol 271(1): 139–146PubMedCrossRefGoogle Scholar
  13. Herm-Goetz A, Weiss S, Stratmann R, Fujita-Becker S, Ruff C, Meyhofer E, Soldati T, Manstein DJ, Geeves MA and Soldati D (2002) Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. Embo J 21(9): 2149–2158CrossRefGoogle Scholar
  14. Hettmann C, Herm A, Geiter A, Frank B, Schwarz E, Soldati T and Soldati D (2000) A dibasic motif in the tail of a class XIV apicomplexan myosin is an essential determinant of plasma membrane localization. Mol Biol Cell 11(4): 1385–1400PubMedGoogle Scholar
  15. Keeley A and Soldati D (2004) The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa Trends Cell. Biology 14: 528–532Google Scholar
  16. Kurzawa SE, Manstein DJ and Geeves MA (1997) Dictyostelium discoideum myosin II: characterization of functional myosin motor fragments. Biochemistry 36: 317–323PubMedCrossRefGoogle Scholar
  17. Leammli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophageT4. Nature 227: 680–685CrossRefGoogle Scholar
  18. Lew AE, Dluzewski AR, Johnson AM and Pinder JC (2002) Myosins of Babesia bovis: molecular characterisation, erythrocyte invasion, and phylogeny. Cell Motil Cytoskeleton 52(4): 202–220PubMedCrossRefGoogle Scholar
  19. Luft BJ and Remington JS (1992) Toxoplasmic encephalitis in AIDS. Clin Infect Dis 15(2): 211–222PubMedGoogle Scholar
  20. Malnasi-Csizmadia A, Pearson DS, Kovacs M, Woolley RJ, Geeves MA and Bagshaw CR (2001) Kinetic resolution of a conformational transition and the ATP hydrolysis step using relaxation methods with a Dictyostelium myosin II mutant containing a single tryptophan residue.Biochemistry 40(42): 12727–12737PubMedCrossRefGoogle Scholar
  21. Margos G, Side’n-Kiamos I, Fowler RE, Gillman TR, Spaccapelo R, Lycett G, Vlachou D, G. P, Eling WM, Mitchell GH, et al. (2000) Myosin A expressions in sporogonic stages of Plasmodium. Molecular and Biochemical Parasitology 111: 465–469PubMedCrossRefGoogle Scholar
  22. Matuschewski K, Mota MM, Pinder JC, Nussenzweig V and Kappe SH (2001) Identification of the class XIV myosins Pb-MyoA and Py-MyoA and expression in Plasmodium. Mol Biochem Parasitol 15: 157–161CrossRefGoogle Scholar
  23. Meissner M, Schluter D and Soldati D (2002) Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298(5594): 837–840PubMedCrossRefGoogle Scholar
  24. Neuhaus EM, Horstmann H, Almers W, Maniak M and Soldati T (1998) Ethane-freezing/methanol-fixation of cell monolayers: a procedure for improved preservation of structure and antigenicity for light and electron microscopies. J Struct Biol 121(3): 326–342PubMedCrossRefGoogle Scholar
  25. Norby JG (1971) Studies on a coupled enzyme assay for rate measurements of ATPase reactions. Acta Chem Scand 25(7): 2717–2726PubMedCrossRefGoogle Scholar
  26. Nyitrai M and Geeves MA (2004) Adenosine diphosphate and strain sensitivity in myosin motors. Philos Trans R Soc Lond B Biol Sci 359(1452): 1867–1877PubMedCrossRefGoogle Scholar
  27. Ödberg-Ferragut C, Soete M, Engels A, Samyn B, Loyens A, Van Beeumen J, Camus D and Dubremetz J-F (1996) Molecular cloning of the Toxoplasma gondii sag4 gene encoding an 18 kDa bradyzoite specific surface protein. Mol Biochem Parasitol 82: 237–244PubMedCrossRefGoogle Scholar
  28. Ostap EM (2002) 2,3-Butanedione monoxime (BDM) as a myosin inhibitor. J Muscle Res Cell Motil 23(4): 305–308PubMedCrossRefGoogle Scholar
  29. Pinder JC, Fowler RE, Dluzewski AR, Bannister LH, Lavin FM, Mitchell GH, Wilson RJ and Gratzer WB (1998) Actomyosin motor in the merozoite of the malaria parasite, plasmodium falciparum: implications for red cell invasion. J Cell Sci 111(Pt 13): 1831–1839PubMedGoogle Scholar
  30. Sibley LD, LeBlanc AJ, Pfefferkorn ER and Boothroyd JC (1992) Generation of a restriction fragment length polymorphism linkage map for Toxoplasma gondii. Genetics 132(4): 1003–1015PubMedGoogle Scholar
  31. Siemankowski RF and White HD (1984) ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. J Biol Chem 259: 5045–5053PubMedGoogle Scholar
  32. Soldati D and Boothroyd JC (1993) Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science 260: 349–352PubMedCrossRefGoogle Scholar
  33. Soldati D, Lassen A, Dubremetz JF and Boothroyd JC (1998) Processing of Toxoplasma ROP1 protein in nascent rhoptries. Mol Biochem Parasitol 96(1–2): 37–48PubMedCrossRefGoogle Scholar
  34. Weiss S, Rossi R, Pellegrino MA, Bottinelli R and Geeves MA (2001) Differing ADP release rates from myosin heavy chain isoforms define the shortening velocity of skeletal muscle fibers. J Biol Chem 276(49): 45902–45908PubMedCrossRefGoogle Scholar
  35. Wetzel DM, Hakansson S, Hu K, Roos D and Sibley LD (2003) Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol Biol Cell 14(2):396–406PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • ANGELIKA HERM-GÖTZ
    • 1
    • 2
  • FRÊDÊRIC DELBAC
    • 1
    • 3
  • STEFAN WEISS
    • 4
  • MIKLOS NYITRAI
    • 4
    • 7
  • ROLF STRATMANN
    • 2
    • 8
  • STANISLAS TOMAVO
    • 5
  • L. DAVID SIBLEY
    • 6
  • MICHAEL A. GEEVES
    • 4
  • DOMINIQUE SOLDATI
    • 2
    • 9
  1. 1.HygieneinstitutUniversitätsklinikum HeidelbergHeidelbergGermany
  2. 2.Zentrum für Molekulare BiologieUniversität HeidelbergHeidelbergGermany
  3. 3.Laboratoire Biologie des Protistes, UMR CNRS 6023Université Blaise PascalAubière cedexFrance
  4. 4.Department of BiosciencesUniversity of KentCanterburyUK
  5. 5.Laboratoire de Chimie Biologique CNRS UMR 8576Bâtiment C9 Université des Sciences et Technologies de LilleVilleneuve d’AscqFrance
  6. 6.Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisUSA
  7. 7.Department of BiophysicsUniversity of PécsPécsHungary
  8. 8.Heidelberger Institut für PflanzenwissenschaftenUniversität HeidelbergHeidelbergGermany
  9. 9.Department of Microbiology and Molecular Medicine, Faculty of MedicineUniversity of Geneva CMUGeneva 4Switzerland

Personalised recommendations