Journal of Muscle Research & Cell Motility

, Volume 26, Issue 6–8, pp 325–332 | Cite as

Developmental changes in rat cardiac titin/connectin: transitions in normal animals and in mutants with a delayed pattern of isoform transition

  • Marion L. Greaser
  • Paul R. Krzesinski
  • Chad M. Warren
  • Brian Kirkpatrick
  • Kenneth S. Campbell
  • Richard L. Moss


Rat cardiac titin undergoes developmental changes in isoform expression during the period from late embryonic through the first 20–25 days of life. At least five size classes of titin isoforms have been identified using SDS agarose gel electrophoresis. The longest normal isoform is expressed in the embryonic stages, and it is progressively replaced with increasingly smaller versions. The isoform switching is consistent with changes in resting tension from lower values in one-day neonates to higher levels in adult myocytes. Considerable micro-heterogeneity in alternative splicing patterns also was found, particularly in the N2BA PEVK region of human, rat, and dog ventricle. A rat mutation has been identified in which the embryonic-neonatal titin isoform transitions are markedly delayed. These mutant animals may prove useful for examining the role of titin in stretch-activated signal transduction and in the Frank–Starling relationship.


Exon Expression Cardiac Titin PEVK Region PEVK Segment N2BA Isoforms 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison and by grants from the National Institutes of Health (HL47053; HL62466; HL77196).


  1. Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S (2001) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89:1065–1072PubMedGoogle Scholar
  2. Campbell KS, Moss RL 2003. SLControl: PC-based data acquisition and analysis for muscle mechanics. Am J Physiol Heart Circ Physiol 285:H2857–H2864PubMedGoogle Scholar
  3. Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, Trombitas K, Labeit S, Granzier H (2000) Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86:59–67PubMedGoogle Scholar
  4. Cooper TA, Ordahl CP (1985) A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing. J Biol Chem 260:11140–11148PubMedGoogle Scholar
  5. Epstein ND, Davis JS (2003) Sensing stretch is fundamental. Cell 112:147–150CrossRefPubMedGoogle Scholar
  6. Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H, Labeit S (2000) Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86:1114–1121PubMedGoogle Scholar
  7. Fukuda N, Granzier H (2004) Role of the giant elastic protein titin in the Frank–Starling mechanism of the heart. Curr Vasc Pharmacol 2:135–139CrossRefPubMedGoogle Scholar
  8. Fukuda N, Wu Y, Farman G, Irving TC, Granzier H (2003) Titin isoform variance and length dependence of activation in skinned bovine cardiac muscle. J Physiol 553:147–154CrossRefPubMedGoogle Scholar
  9. Furst DO, Osborn M, Nave R, Weber K (1988) The organization of the titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z-line extends close to the M-line. J Cell Biol 106:1563–1572CrossRefPubMedGoogle Scholar
  10. Granzier H, Labeit S (2002) Cardiac titin: an adjustable multi-functional spring. J Physiol (Lond) 541:335–342CrossRefGoogle Scholar
  11. Granzier HL, Labeit S (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 94:284–295CrossRefPubMedGoogle Scholar
  12. Greaser M (2001) Identification of new repeating motifs in titin. Proteins 43:145–149CrossRefPubMedGoogle Scholar
  13. Greaser ML, Berri M, Warren CM, Mozdziak PE (2002) Species variations in cDNA sequence and exon splicing patterns in the extensible I-band region of cardiac titin: relation to passive tension. J Muscle Res Cell Motil 23:471–480CrossRefGoogle Scholar
  14. Gregorio CC, Granzier H, Sorimachi H, Labeit S (1999) Muscle assembly: a titanic achievement? Curr Opin Cell Biol 11:18–25CrossRefPubMedGoogle Scholar
  15. Gutierrez-Cruz G, Van Heerden AH, Wang K (2001) Modular motif, structural folds and affinity profiles of the PEVK segment of human fetal skeletal muscle titin. J Biol Chem 276:7442–7449CrossRefPubMedGoogle Scholar
  16. Helmes M, Trombitas K, Centner T, Kellermayer M, Labeit S, Linke WA, Granzier H (1999) Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring. Circ Res 84:1339–1352PubMedGoogle Scholar
  17. Jin JP, Lin JJ (1989) Isolation and characterization of cDNA clones encoding embryonic and adult isoforms of rat cardiac troponin T. J Biol Chem 264:14471–14477PubMedGoogle Scholar
  18. Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296PubMedGoogle Scholar
  19. Lahmers S, Wu Y, Call DR, Labeit S, Granzier H (2004) Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 94:505–513CrossRefPubMedGoogle Scholar
  20. Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S, Gregorio CC (1999) I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 146:631–644CrossRefPubMedGoogle Scholar
  21. Lompre AM, Mercadier JJ, Wisnewsky C, Bouveret P, Pantaloni C, D’Albis A, Schwartz K (1981) Species- and age-dependent changes in the relative amounts of cardiac myosin isozymes in mammals. Dev Biol 84: 286–290CrossRefGoogle Scholar
  22. Lompre AM, Nadel-Ginard B, Mahdavi V (1984) Expression of the cardiac ventricular alpha- and beta-myosin heavy chain gene is developmentally and hormonally regulated. J Biol Chem 259: 6437–6446PubMedGoogle Scholar
  23. Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK, del Monte F, Hajjar RJ, Linke WA (2004) Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res 95:708–716CrossRefPubMedGoogle Scholar
  24. Maruyama K (1976) Connectin, an elastic protein from myofibrils. J Biochem (Tokyo) 80:405–407Google Scholar
  25. Maruyama K (1997) Connectin/titin, a giant elastic protein of muscle. FASEB J 11:341–345PubMedGoogle Scholar
  26. Miller MK, Granzier H, Ehler E, Gregorio CC (2004) The sensitive giant: the role of titin-based stretch sensing complexes in the heart. Trends Cell Biol 14:119–126CrossRefPubMedGoogle Scholar
  27. Nagueh SF, Shah G, Wu Y, Torre-Amione G, King NM, Lahmers S, Witt CC, Becker K, Labeit S, Granzier HL (2004) Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110:155–162CrossRefPubMedGoogle Scholar
  28. Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA (2004) Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res 94:967–975CrossRefPubMedGoogle Scholar
  29. Reiser PJ, Westfall MV, Schiaffino S, Solaro JR (1994) Tension production and thin-filament protein isoforms in developing rat myocardium. Am J Physiol 267: H1589–H1596PubMedGoogle Scholar
  30. Strang KT, Sweitzer NK, Greaser ML, Moss RL (1994) Beta-adrenergic receptor stimulation increases unloaded shortening velocity of skinned single ventricular myocytes from rats. Circ Res 74: 542–549PubMedGoogle Scholar
  31. Saggin L, Ausoni S, Gorza L, Sartore S, Schiaffino S (1988) Troponin T switching in the developing rat heart. J Biol Chem 263:18488–18492PubMedGoogle Scholar
  32. Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101:671–684CrossRefPubMedGoogle Scholar
  33. Tskhovrebova L, Trinick J (2003) Titin: properties and family relationships. Nat Rev Mol Cell Biol 4:679–689CrossRefPubMedGoogle Scholar
  34. Trombitas K, Freiburg A, Centner T, Labeit S, Granzier H (1999) Molecular dissection of N2B cardiac titin’s extensibility. Biophys J 77:3189–3196PubMedGoogle Scholar
  35. Trombitas K, Redkar A, Centner T, Wu Y, Labeit S, Granzier H (2000) Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Biophys J 79:3226–3234PubMedCrossRefGoogle Scholar
  36. Trombitas K, Wu Y, Labeit D, Labeit S, Granzier H (2001) Cardiac titin isoforms are coexpressed in the half-sarcomere and extend independently. Am J Physiol Heart Circ Physiol 281:H1793–H1799PubMedGoogle Scholar
  37. Wang K, McClure J, Tu A (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 76:3698–3702PubMedCrossRefGoogle Scholar
  38. Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R (1991) Regulation of skeletal muscle stiffness and elasticity by titin isoforms: A test of the segmental extension model of resting tension. Proc Natl Acad Sci USA 88:7101–7105PubMedCrossRefGoogle Scholar
  39. Warren CM, Krzesinski PR, Greaser ML (2003a) Vertical agarose gel electrophoresis and electroblotting of high molecular weight proteins. Electrophoresis 24:1695–1702CrossRefGoogle Scholar
  40. Warren CM, Jordan MC, Roos KP, Krzesinski PR, Greaser ML (2003b) Titin isoform expression in normal and hypertensive myocardium. Cardiovasc Res 59:86–94CrossRefGoogle Scholar
  41. Warren CM, Krzesinski PR, Campbell KS, Moss RL, Greaser ML (2004) Titin isoform changes in rat myocardium during development. Mech Dev 121:1301–1312CrossRefPubMedGoogle Scholar
  42. Watanabe K, Nair P, Labeit D, Kellermayer MS, Greaser M, Labeit S, Granzier H (2002) Molecular mechanics of cardiac titin’s PEVK and N2B spring elements. J Biol Chem 277:11549–11548CrossRefPubMedGoogle Scholar
  43. Wu Y, Cazorla O, Labeit D, Labeit S, Granzier H (2000) Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol 32:2151–2162CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Marion L. Greaser
    • 1
  • Paul R. Krzesinski
    • 1
  • Chad M. Warren
    • 1
  • Brian Kirkpatrick
    • 1
  • Kenneth S. Campbell
    • 1
  • Richard L. Moss
    • 1
  1. 1.University of Wisconsin-MadisonMadisonUSA

Personalised recommendations