Journal of Muscle Research & Cell Motility

, Volume 26, Issue 6–8, pp 291–301 | Cite as

Titin PEVK segment: charge-driven elasticity of the open and flexible polyampholyte

  • Jeffrey G. Forbes
  • Albert J. Jin
  • Kan Ma
  • Gustavo Gutierrez-Cruz
  • Wanxia L. Tsai
  • Kuan Wang


The giant protein titin spans half of the sarcomere length and anchors the myosin thick filament to the Z-line of skeletal and cardiac muscles. The passive elasticity of muscle at a physiological range of stretch arises primarily from the extension of the PEVK segment, which is a polyampholyte with dense and alternating-charged clusters. Force spectroscopy studies of a 51 kDa fragment of the human fetal titin PEVK domain (TP1) revealed that when charge interactions were reduced by raising the ionic strength from 35 to 560 mM, its mean persistence length increased from 0.30±0.04 nm to 0.60±0.07 nm. In contrast, when the secondary structure of TP1 was altered drastically by the presence of 40 and 80% (v/v) of trifluoroethanol, its force-extension behavior showed no significant shift in the mean persistence length of ∼ ∼0.18±0.03 nm at the ionic strength of 15 mM. Additionally, the mean persistence length also increased from 0.29 to 0.41 nm with increasing calcium concentration from pCa 5–8 to pCa 3–4. We propose that PEVK is not a simple entropic spring as is commonly assumed, but a highly evolved, gel-like enthalpic spring with its elasticity dominated by the sequence-specific charge interactions. A single polyampholyte chain may be fine-tuned to generate a broad range of molecular elasticity by varying charge pairing schemes and chain configurations.


Circular Dichroism Spectrum Persistence Length Nebulin Detachment Force Titin Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Intramural Research Program of the NIAMS, NIH, HHS.


  1. Adzhubei AA, Sternberg MJE, 1993. Left-handed polyproline-ii helices commonly occur in globular-proteinsJ Mol Biol 229:472–493PubMedCrossRefGoogle Scholar
  2. Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, et al., 2001. The complete gene sequence of titin, expression of an unusual approximate to 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking systemCirc Res 89:1065–1072PubMedGoogle Scholar
  3. Baumann CG, Smith SB, Bloomfield VA, Bustamante C, 1997. Ionic effects on the elasticity of single DNA moleculesProc Natl Acad Sci USA 94:6185–6190PubMedCrossRefGoogle Scholar
  4. Bustamante C, Marko JF, Siggia ED, Smith S, 1994. Entropic elasticity of lambda-phage DNA Science 265:1599–1600PubMedGoogle Scholar
  5. Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H, Fernandez JM, 2000. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineeringProg Biophys Mol Biol 74:63–91PubMedCrossRefGoogle Scholar
  6. Crow EL, Shimizu K, 1988. Lognormal Distributions: Theory and Application Dekker New YorkGoogle Scholar
  7. Feldman HJ, Hogue CWV, 2000. A fast method to sample real protein conformational space Proteins 39:112–131PubMedCrossRefGoogle Scholar
  8. Forbes JG, Jin AJ, Wang K, 2001. Atomic force microscope study of the effect of the immobilization substrate on the structure and force-extension curves of a multimeric protein Langmuir 17:3067–3075CrossRefGoogle Scholar
  9. Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, et al., 2000. Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversityCirc Res 86:1114–1121PubMedGoogle Scholar
  10. Funatsu T, Anazawa T, Ishiwata SI. 1994. Structural and functional reconstitution of thin-filaments in skeletal-muscleJ Muscle Res Cell Motil 15:158–171PubMedCrossRefGoogle Scholar
  11. Greaser M, 2001. Identification of new repeating motifs in titin Proteins 43:145–149PubMedCrossRefGoogle Scholar
  12. Gutierrez-Cruz G, Van Heerden AH, Wang K, 2001. Modular motif, structural folds and affinity profiles of the PEVK segment of human fetal skeletal muscle titinJ Biol Chem 276:7442–7449PubMedCrossRefGoogle Scholar
  13. Ha BY, Thirumalai D, 1997. Persistence length of intrinsically stiff polyampholyte chains J Phys II 7:887–902CrossRefGoogle Scholar
  14. Horowits R, 1999. The Physiological Role of Titin in Striated Muscle. Rev. Physiol. Biochem. PharmSpringer-Verlag Berlin Berlin p 57–96Google Scholar
  15. Humphrey W, Dalke A, Schulten K, 1996. VMD: visual molecular dynamics. J Mol Graph 14:33PubMedCrossRefGoogle Scholar
  16. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K, 1999. NAMD2: greater scalability for parallel molecular dynamicsJ Comput Phys 151:283–312CrossRefGoogle Scholar
  17. Kellermayer MSZ, Smith SB, Bustamante C, Granzier HL, 1998. Complete unfolding of the titin molecule under external forceJ Struct Biol 122:197–205PubMedCrossRefGoogle Scholar
  18. Kellermayer MSZ, Smith SB, Bustamante C, Granzier HL, 2001. Mechanical fatigue in repetitively stretched single molecules of titinBiophys J 80:852–863PubMedGoogle Scholar
  19. Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C, 1997. Folding-unfolding transitions in single titin molecules characterized with laser tweezersScience 276:1112–1116PubMedCrossRefGoogle Scholar
  20. Labeit D, Watanabe K, Witt C, Fujita H, Wu YM, Lahmers S, Funck T, Labeit S, Granzier H, 2003. Calcium-dependent molecular spring elements in the giant protein titinProc Natl Acad Sci USA 100:13716–13721PubMedCrossRefGoogle Scholar
  21. Labeit S, Kolmerer B, 1995. Titins – giant proteins in charge of muscle ultrastructure and elasticityScience 270:293–296PubMedGoogle Scholar
  22. Labeit S, Kolmerer B, Linke WA, 1997. The giant protein titin – Emerging roles in physiology and pathophysiologyCirc Res 80:290–294PubMedGoogle Scholar
  23. Li HB, Linke WA, Oberhauser AF, Carrion-Vazquez M, Kerkviliet JG, Lu H, Marszalek PE, Fernandez JM, 2002. Reverse engineering of the giant muscle protein titin Nature 418:998–1002PubMedCrossRefGoogle Scholar
  24. Li HB, Oberhauser AF, Redick SD, Carrion-Vazquez M, Erickson HP, Fernandez JM, 2001. Multiple conformations of PEVK proteins detected by single-molecule techniques Proc. Natl Acad Sci USA 98:10682–10686PubMedCrossRefGoogle Scholar
  25. Linke WA, Ivemeyer M, Mundel P, Stockmeier MR, Kolmerer B, 1998. Nature of PEVK-titin elasticity in skeletal muscleProc Natl Acad Sci USA 95:8052–8057PubMedCrossRefGoogle Scholar
  26. Linke WA, Kulke M, Li HB, Fujita-Becker S, Neagoe C, Manstein DJ, Gautel M, Fernandez JM, 2002. PEVK domain of titin: an entropic spring with actin-binding properties J Struct Biol 137:194–205PubMedCrossRefGoogle Scholar
  27. Ma K, Kan LS, Wang K, 2001. Polyproline II helix is a key structural motif of the elastic PEVK segment of titin Biochemistry 40:3427–3438PubMedCrossRefGoogle Scholar
  28. Ma K, Wang K, 2002. Interaction of nebulin SH3 domain with titin PEVK and myopalladin: implications for the signaling and assembly role of titin and nebulinFEBS Lett 532:273–278PubMedCrossRefGoogle Scholar
  29. Maruyama K and Kimura S (2000) Connectin: from Regular to Giant Sizes of Sarcomeres. Elastic Filaments of the Cell (pp. 25–33)Google Scholar
  30. Maruyama K, Kimura S, Ohashi K, Kuwano Y, 1981. Connectin, an elastic protein of muscle. identification of “titin” with connectinJ Biochem (Tokyo) 89:701–709Google Scholar
  31. Minajeva A, Kulke M, Fernandez JM, Linke WA, 2001. Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils Biophys J 80:1442–1451PubMedGoogle Scholar
  32. Odijk T, 1995. Stiff chains and filaments under tension Macromolecules 28:7016–7018CrossRefGoogle Scholar
  33. Podgornik R, Hansen PL, Parsegian VA, 2000. Elastic moduli renormalization in self-interacting stretchable polyelectrolytes J Chem Phys 113:9343–9350Google Scholar
  34. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE, 1997. Reversible unfolding of individual titin immunoglobulin domains by AFM Science 276:1109–1112PubMedCrossRefGoogle Scholar
  35. Sarkar A, Caamano S, Fernandez JM, 2005. The elasticity of individual titin PEVK exons measured by single molecule atomic force microscopy J Biol Chem 280:6261–6264PubMedCrossRefGoogle Scholar
  36. Trombitas K, Granzier H, 1997. Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension. Am J Physiol 273:C662–C670PubMedGoogle Scholar
  37. Tskhovrebova L, Trinick J, 2002. Role of titin in vertebrate striated muscle. Philos Trans R Soc Lond Ser B-Biol Sci 357:199–206CrossRefGoogle Scholar
  38. Tskhovrebova L, Trinick J, 2004. Properties of titin immunoglobulin and fibronectin−3 domains J Biol Chem 279:46351–46354PubMedCrossRefGoogle Scholar
  39. Tskhovrebova L, Trinick J, Sleep JA, Simmons RM, 1997. Elasticity and unfolding of single molecules of the giant muscle protein titinNature 387:308–312PubMedCrossRefGoogle Scholar
  40. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al., 2001. The sequence of the human genome Science 291:1304–1351PubMedCrossRefGoogle Scholar
  41. Wang K, 1985. Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesisCell Muscle Motil 6:315–369PubMedGoogle Scholar
  42. Wang K, Forbes JG, Jin AJ, 2001. Single molecule measurements of titin elasticity Prog Biophys Mol Biol 77:1–44PubMedCrossRefGoogle Scholar
  43. Wang K, McClure J, Tu A, 1979. Titin: major myofibrillar components of striated muscle Proc Natl Acad Sci USA 76:3698–3702PubMedCrossRefGoogle Scholar
  44. Wang MD, Yin H, Landick R, Gelles J, Block SM, 1997. Stretching DNA with optical tweezers Biophys J 72:1335–1346PubMedGoogle Scholar
  45. Watanabe K, Nair P, Labeit D, Kellermayer MSZ, Greaser M, Labeit S, Granzier H, 2002. Molecular mechanics of cardiac titin’s PEVK and N2B spring elementsJ Biol Chem 277:11549–11558PubMedCrossRefGoogle Scholar
  46. Williamson MP, 1994. The structure and function of proline-rich regions in proteins Biochem J 297:249–260PubMedGoogle Scholar
  47. Woody RW, 1996. Theory of circular dichroism of proteins In: Fasman GD, editor. Circular Dichroism and the Conformational Analysis of Biomolecules Plenum Press New YorkGoogle Scholar
  48. Yamasaki R, Berri M, Wu Y, Trombitas K, McNabb M, Kellermayer MSZ, Witt C, Labeit D, Labeit S, Greaser M, et al., 2001. Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1Biophys J 81:2297–2313PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Jeffrey G. Forbes
    • 1
  • Albert J. Jin
    • 1
  • Kan Ma
    • 1
  • Gustavo Gutierrez-Cruz
    • 1
  • Wanxia L. Tsai
    • 1
  • Kuan Wang
    • 1
  1. 1.Muscle Proteomics and Nanotechnology SectionLaboratory of Muscle Biology, NIAMS, NIH, DHHSBethesdaUSA

Personalised recommendations