Journal of Muscle Research & Cell Motility

, Volume 25, Issue 8, pp 645–655 | Cite as

Involvement of c-Jun N-terminal kinase activities in skeletal muscle differentiation

  • Ashwani Khurana
  • Chinmoy S. DeyEmail author


Previous studies on skeletal muscle differentiation showed that myogenesis is regulated by extracellular signal-regulated kinases (ERK-1/-2) and p38 mitogen activated kinase (MAPK) pathways. Present study shows that c-Jun NH(2)-terminal protein kinase (JNK) activities were up regulated during skeletal muscle differentiation in rat skeletal muscle L6E9 cells, as determined by Western immunoblot of differentiating cells probed with anti-phospho-JNK antibody. Inhibition of JNK activities by JNK inhibitor II drastically inhibited differentiation as determined by decreased myosin, myogenin expression and creatine kinase activity. The inhibition of the differentiation was regulated by apoptosis as determined by the detection of poly(ADP-ribose) polymerase (PARP) cleavage, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells when JNK activities were inhibited. Apoptosis was accompanied by marked expression and activation of c-Jun and p53 transcription factors. Taken together, our results indicate that basal JNK activities are essential for regulating skeletal muscle differentiation, and inhibition of JNK activation affects myogenesis by apoptosis dependent on c-Jun and p53 transcription factors.


Creatine Kinase Creatine Kinase Activity Skeletal Muscle Differentiation Terminal Protein Mitogen Activate Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams V, Gielen S, Hambrecht R and Schuler G ( 2001) Apoptosis in skeletal muscle. Front Biosci 6: D1–D11.Google Scholar
  2. Bengal, E, Ransone, L, Scharfmann, , Dwarki, VJ, Tapscott, SJ, Weintraub, H, Verma, IM 1992Functional antagonism between c-Jun and MyoD proteins: a direct physical associationCell68507519CrossRefPubMedGoogle Scholar
  3. Bennett, BL, Sasaki, DT, Murray, BW, O’Leary, EC, Sakata, ST, Xu, W, Leisten, JC, Motiwala, A, Pierce, S, Satoh, Y, Bhagwat, SS, Manning, AM, Anderson, DW 2001SP600125, an anthra-xpyrazolone inhibitor of Jun N-terminal kinaseProc Natl Acad Sci USA981368113686CrossRefPubMedGoogle Scholar
  4. Bonni, A, Brunet, A, West, AE, Datta, SR, Takasu, MA, Greenberg, ME 1999Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and independent mechanismsJ Biol Chem28613581362Google Scholar
  5. Caetano, MS, Vieira-De-Abreu, A, Teixeira, LK, Werneck, MB, Barcinski, MA, Viola, JP 2002NFATC2 transcription factor regulates cell cycle progression during lymphocyte activation: evidence of its involvement in the control of cyclin gene expressionFASEB J1419401942Google Scholar
  6. Cavigeli, M, Dolfi, F, Claret, FX, Karin, M 1995Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylationEMBO J1459575764PubMedGoogle Scholar
  7. Craig, R, Larkin, A, Mingo, AM, Thuerauf, DJ, Andrews, C, McDonough, PM, Glembotski, CC 2000p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and releaseEvidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J Biol Chem2752381423824Google Scholar
  8. Cuenda, A, Cohen, P 1999Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesisJ Biol Chem27443414346CrossRefPubMedGoogle Scholar
  9. Davis, RJ 2000Signal transduction by the JNK group of MAP kinasesCell103239252CrossRefPubMedGoogle Scholar
  10. Du, L, Lyle, CS, Obey, TB, Gaarde, WA, Muir, JA, Bennett, BL, Chambers, TC 2004Inhibition of cell proliferation and cell cycle progression by specific inhibition of basal JNK activity: evidence that mitotic Bcl-2 phosphorylation is JNK-independentJ Biol Chem.2791195711966CrossRefPubMedGoogle Scholar
  11. Eferl, R, Sibilia, M, Hilberg, F, Fuchsbichler, A, Kufferath, I, Guertl, B, Zenz, R, Wagner, EF, Zatloukal, K 1999Functions of c-Jun in liver and heart developmentJ Cell Biol14510491061CrossRefPubMedGoogle Scholar
  12. Florini, JR, Magri, KA, Ewton, DZ, James, PL, Grindstaff, K, Rotwein, PS 1991“Spontaneous” differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-IIJ Biol Chem2661591715923PubMedGoogle Scholar
  13. Fuchs, SY, Adler, V, Buschmann, T, Yin, Z, Wu, X, Jones, SN, Ronai, Z 1998bJNK targets p53 ubiquitination and degradation in nonstressed cellsGenes Dev1226582663Google Scholar
  14. Fuchs, SY, Adler, V, Pincus, MR, Ronai, Z 1998aMEKK/JNK signaling stabilizes and activates p53Proc Natl Acad Sci USA.9525862591CrossRefGoogle Scholar
  15. Gredinger, E, Gerber, AN, Tamir, Y, Tapscott, SJ, Bengal, E 1998Mitogen activated protein kinase pathway is involved in the differentiation of muscle cellsJ Biol Chem2731043610444CrossRefPubMedGoogle Scholar
  16. Huynh, H 2002Induction of apoptosis in rat ventral prostate by finasteride is associated with alteration in MAP kinase pathways and Bcl-2 related family of proteinsInt J Oncol2012971303PubMedGoogle Scholar
  17. Ichijo, H 1999From receptors to stress-activated MAP kinasesOncogene1860876093CrossRefPubMedGoogle Scholar
  18. Khurana, A, Dey, CS 2002Subtype specific roles of mitogen activated protein kinases in L6E9 skeletal muscle cell differentiationMol Cell Biochem2382739CrossRefPubMedGoogle Scholar
  19. Liu, ZG, Baskaran, R, Lea-Chou, ET, Wood, LD, Chen, Y, Karin, M, Wang, JYJ 1996aThree distinct signalling responses by murine fibroblasts to genotoxic stressNature384273276CrossRefGoogle Scholar
  20. Liu, ZG, Hsu, H, Goddel, DV, Karin, M 1996bDissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell deathCell87565576CrossRefGoogle Scholar
  21. Mc, Gee MM, Campiani, G, Ramunno, A, Nacci, V, Lawler, M, Williams, DC, Zisterer, DM 2002Activation of the c-Jun N-terminal kinase (JNK) signaling pathway is essential during PBOX-6-induced apoptosis in chronic myelogenous leukemia (CML) cellsJ Biol Chem2771838318389CrossRefPubMedGoogle Scholar
  22. Mosman, T 1983Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assaysJ Immunol Methods655563PubMedGoogle Scholar
  23. Natoli, G, Costanzo, A, Ianni, A, Templeton, DJ, Woodgett, JR, Balsano, C, Levrero, M 1997Activation of SAPK/JNK by TNF receptor 1 through a noncytotoxic TRAF2-dependent pathwayScience275200203CrossRefPubMedGoogle Scholar
  24. Potapova, O, Gorospe, M, Dougherty, RH, Dean, NM, Gaarde, WA, Holbrook, NJ 2000Inhibition of c-Jun N-terminal kinase 2 expression suppresses growth and induces apoptosis of human tumor cells in a p53-dependent mannerMol Cell Biol2017131722CrossRefPubMedGoogle Scholar
  25. Reinhard, C, Shamoon, B, Shyamala, V, Williams, LT 1997Tumor necrosis factor alpha-induced activation of c-Jun N-terminal kinase is mediated by TRAF2EMBO J1610801092CrossRefPubMedGoogle Scholar
  26. Roulston, A, Reinhard, C, Amiri, P, Williams, LT 1998Early activation of c-Jun N-terminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alphaJ Biol Chem2731023210239CrossRefPubMedGoogle Scholar
  27. Ryan, KM, Phillips, AC, Vousden, KH 2001Regulation and function of the p53 tumor suppressor proteinCurr Opin Cell Biol13332337CrossRefPubMedGoogle Scholar
  28. Sabapathy, K, Jochum, W, Hochedlinger, K, Chang, L, Karin, M, Wagner, EF 1999Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2Mech. Dev89115124CrossRefPubMedGoogle Scholar
  29. Smith, PK, Krohn, RI, Hermanson, GT, Mallia, AK, Gartner, FH, Provenzano, MD, Fujimoto, EK, Goeke, NM, Olson, BJ, Klenk, DC 1985Measurement of protein using bicinchoninic acidAnal Biochem1507685CrossRefPubMedGoogle Scholar
  30. Yang, DD, Kuan, CY, Whitmarsh, AJ, Rincon, M, Zheng, TS, Davis, RJ, Rakic, P, Flavell, RA 1997Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 geneNature389865870CrossRefPubMedGoogle Scholar
  31. Zacchi, P, Gostissa, M, Uchida, T, Salvagno, C, Avolio, F, Volinia, S, Ronai, Z, Blandino, G, Schneider, C, Sal, GD 2002The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insultsNature419853857CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Signal Transduction Research Laboratory, Department of Biotechnology National Institute of Pharmaceutical Education and ResearchPunjabIndia
  2. 2.Mount Sinai School of Medicine, Department of Oncological SciencesIcahn Medical InstituteNew YorkUSA

Personalised recommendations